Автор работы: Пользователь скрыл имя, 27 Декабря 2010 в 19:47, лекция
1. Генетика – наука о наследственности и изменчивости. Предмет, цели и задачи медицинской генетики. Методы генетики.
2. История генетики человека.
3. Цитологические основы наследственности.
4. Временная организация клетки. Клеточный и митотический циклы.
5. Гетерохроматин и эухроматин.
6. Половой хроматин.
7. Современные методы хромосомного анализа.
4.
Временная организация
клетки. Клеточный и
митотический циклы.
Клеточный цикл – это период жизнедеятельности клетки от момента её появления до гибели или образования дочерних клеток. Типы деления эукариотических клеток: амитоз, митоз, мейоз.
Митотический цикл – это период жизнедеятельности клетки от момента её образования и до разделения на дочерние. Митотический цикл включает интерфазу и митоз.
Интерфаза – это период функционирования и подготовки клетки к делению, она подразделяется на три периода:
а) Пресинтетический (постмитотический) G1 – продолжительность от нескольких часов до нескольких месяцев и даже лет. Клетка выполняет свои функции, увеличивается в размерах, в ней идёт синтез белков и нуклеотидов, накапливается энергия и вещества. Такая клетка содержит диплоидный набор хромосом, каждая хромосома имеет одну хроматиду – 2n2c.
б) Синтетический период S – продолжительность 6 – 8 часов. В клетке происходит репликация молекул ДНК и её содержание в клетке удваивается, т. е. каждая хроматида достраивает себе подобную, генетическая информация к концу периода 2n4c.
в)
Постсинтетический период G2 –
продолжительность меньше, чем у предыдущих
периодов. Клетка готовится к делению,
накапливается энергия, синтезируются
белки веретена деления, постепенно затухают
все синтетические процессы, необходимые
для репродукции органоидов, меняется
вязкость цитоплазмы, идёт интенсивный
синтез АТФ и накопление энергии, происходит
репликация центриолей и начало образования
веретена деления. Генетическая информация
2n4c. Клетка вступает в митоз.
2) Митоз – это основной способ деления соматических клеток. Непрерывный процесс митоза подразделяют на 4 стадии: профазу, метафазу, анафазу и телофазу. В делящихся клетках в профазе все хромосомы сильно спирализуются, укорачиваются и приобретают компактные размеры и форму. Спирализация хромосом достигает максимума в метафазе и хромосомы удобнее всего изучать (метафазная пластинка). В анафазе центромеры каждой из хромосом разделяются и сестринские хроматиды с этого момента становятся самостоятельными дочерними хромосомами. В телофазе формируются ядра дочерних клеток: хромосомы деспирализуются, строятся ядерные оболочки, в ядре появляются ядрышки. После кариокинеза происходит цитокинез, митоз заканчивается образованием двух дочерних клеток, каждая из которых имеет двойной набор хромосом, каждая хромосома однохроматидная.
Значение митоза в точном распределении генетической информации между дочерними клетками, в поддержании постоянства числа хромосом, в увеличении числа клеток, обеспечивающих рост организма и регенерацию тканей и органов.
Эукариотические клетки могут делиться и прямым делением – амитозом. Это прямое деление клеток и ядер, находящихся в условиях физиологической и репаративной регенерации, или опухолевых клеток. При этом не происходит образования видимых хромосом и веретена деления, возникает перетяжка ядра, затем цитоплазмы, и разделение их на две части. В последнее время установлено, что при амитозе происходит также равномерное распределение генетического материала между дочерними клетками, хотя механизм его не вполне ясен.
Патология
митоза – эндомитоз, политения (эндорепродукция),
образование новых клеток нарушается,
а хромосомы продолжают удваиваться. В
результате этого в клетках возникают
необычайно крупные ядра. При эндомитозе
происходит удвоение хромосом без деления
ядра, что приводит к образованию полиплоидных
клеток. При политении наблюдается многократное
удвоение хроматид, но они не расходятся,
и в результате образуются политенные
(многонитчатые, гигантские) хромосомы,
например, в слюнных железах мухи дрозофилы.
3) Мейоз – это деление половых клеток на стадии созревания, в результате которого образуются половые клетки, гаметы. Мейотическое деление протекает в два этапа – мейоз I и мейоз II. Каждое мейотическое деление подразделяют на 4 фазы: профазу, метафазу, анафазу и телофазу.
Наиболее сложной является профаза мейоза I. На этой стадии происходит конъюгация гомологичных хромосом и кроссинговер. Хромосомы образуют биваленты, состоящие из 4-х хроматид (4-х наборов ДНК). В анафазе гомологичные хромосомы, состоящие из двух хроматид, отходят к противоположным полюсам клетки. Расхождение хромосом носит случайный характер. Содержание генетической информации у каждого полюса становится 1n2c. В телофазе происходит образование двух дочерних гаплоидных клеток, но хромосомы не деспирализуются. После окончания мейоза I наступает короткий промежуток – интеркинез, в течение которого не происходят репликация ДНК и удвоение хроматид.
Мейоз II протекает по типу обычного митоза. В анафазе этого мейоза к полюсам отходят хроматиды и содержание генетического материала становится 1n1c у каждого полюса клетки. В телофазе мейоза II после цитокинеза образуются клетки с гаплоидным набором хромосом, содержащих по одной хроматиде.
Таким образом, в результате двух последовательных делений мейоза из одной диплоидной клетки образуется 4 гаплоидные.
Значение мейоза в редукции числа хромосом в половых клетках для последующего восстановления набора хромосом в зиготе, в конъюгации гомологичных хромосом и рекомбинации генетического материала.
Патология
мейоза – нерасхождение хромосом после
конъюгации и, как следствие, избыток генетического
материала или его недостаток в одной
из дочерних клеток – хромосомные и геномные
мутации. Также возможны мутации генные
как при митозе, так и при мейозе.
5.
Гетерохроматин и
эухроматин.
Упоминаемый ранее порядок чередования поперечных тёмных и светлых сегментов, образующийся при дифференциальной окраске хромосом, связан с различной степенью конденсации хроматина, зависящей от его функционального состояния. Гетерохроматиновые участки функционально менее активны, чем эухроматиновые. Они содержат прочитанную (транскрибированную ) ДНК, становятся более плотными и хорошо окрашиваются как в состоянии «покоя» так и при делении клетки. Эухроматиновые участки деконденсированы, т. е. более рыхлые, в них локализована большая часть генов, это активный участок хромосомы, окрашивается неинтенсивно. В хромосомах участки эу- и гетерохроматина чередуются и позволяют сделать анализ кариотипа, чтобы выявить нарушения, которые могут приводить к аномалиям развития, наследственным болезням или гибели плодов и эмбрионов на ранних стадиях развития.
Анализ кариотипа предполагает составление кариограммы или идиограммы – это систематизированный кариотип, в котором хромосомы располагаются по мере убывания их величины. Кариограмма – микрофотография хромосом, расположенных согласно строению и величине гомологичными парами.
Техника подсчёта числа хромосом.
Взятую
для анализа кровь разделяют:
эритроциты осаждают 10%-ным раствором
желатина или центрифугированием; лейкоциты
помещают в специальную среду, содержащую
50 ингридиентов. Среди которых есть специфический
белок фитогемагглютинин – вытяжка из
семян бобовых. Благодаря ему лейкоциты
начинают интенсивно делиться и хромосомы
можно изучать на стадии метафазной пластинки.
Культуру помещают в термостат в специальных
флаконах на 3 дня при 370 С. Потом
в пробу добавляют алколоид колхицин,
разрушающий нити веретена деления, деление
приостанавливается, хромосомы не способны
расходиться к полюсам клетки. Добавляют
гипотонический раствор, проводят фиксацию
и окрашивание. Затем хромосомы фотографируют,
микрофотографию увеличивают в размерах,
хромосомы вырезают, подбирают гомологичные
пары по размерам, расположению центромеры,
гетеро- и эухроматиновым участкам.
6.
Половой хроматин.
Различия полов обусловлены Х и У хромосомами (половыми). Половые отличия в строении ядер соматических клеток обнаружили в 1949 г. Бертрам и Барр, изучая нейроны кошки. Эти отличия присущи клеткам всех млекопитающих в период интерфазы. Интерфазные ядра содержат на переферии чечевицеподобные глыбки хроматина размерами от 1,8 до 1,2 мкм, примыкающие к ядерной оболочке и отличающиеся от ядрышек. Их назвали по имени исследователя «тельца Барра». Тельца Барра отсутствуют у самцов. Лейкоциты женщин содержат своеобразный придаток ядра, гомолог телец Барра, «барабанные палочки». Это - половой хроматин. Его наличие в клетках женщин связано с Х-хромосомами, которых у женщин две. Одна из них генетически менее активная, синтез ДНК в ней идёт позднее, она гетерохроматичная, окрашивается иначе, чем её гомолог. У мужчин половые хромосомы разные – Х и У, и они обе одинаково активны в интерфазе.
Хроматин половой – это отличия в интерфазном ядре соматических клеток особей женского пола у млекопитающих. По периферии ядер располагается глыбка хроматина – «тельце Барра», а в ядрах лимфоцитов находится придаток «барабанная палочка». У человека «тельца Барра» легче обнаружить в соскобе эпителия слизистой оболочки ротовой полости (буккального эпителия). Для выявления Х-хроматина окрашивание мазков проводят ацеторсеином и препараты просматривают в обычном световом микроскопе. Этот метод позволяет определить количество Х-хромосом в кариотипе. «Телец Барра» и «барабанных палочек» всегда на единицу меньше, чем число Х-хромосом.
Техника исследования полового хроматина - см. стр. 50 пособие по генетике Карузиной.
Исследования
полового хроматина имеют
7.
Современные методы
хромосомного анализа.
Изучением строения и функций хромосом занимается наука цитогенетика. Суть цитогенетических методов при всём разнообразии отдельных этапов заключается в микроскопическом анализе хромосом, позволяющем выявить числовые и структурные изменения хромосомного набора. Методы цитогенетического исследования можно условно подразделить на прямые и непрямые. Прямые методы – это получение препаратов делящихся клеток без культивирования. Непрямые – это получение препаратов хромосом из клеток, культивированных в искусственных питательных средах.
Важный момент для анализа хромосом является их окрашивание:
Методы
цитогенетической диагностики часто
используют в комплексе с другими,
что позволяет более точно
диагностировать сложные
Все вопросы назначения того или иного цитогенетического исследования осуществляются при медико-генетическом консультировании. Проблемы, решаемые лабораторными цитогенетическими методами, следующие:
-подозрение на хромосомную болезнь по клинической симптоматике;
-наличие
у ребёнка множественных
-многократные спонтанные аборты, мёртворождения или рождение детей с пороками развития;
-нарушение
репродуктивной функции
-существенная
задержка умственного и
-пренатальная диагностика (риск по возрасту, при рождении предыдущего ребёнка с хромосомной болезнью);
Информация о работе История развития и основные достижения современной генетики