Автор работы: Пользователь скрыл имя, 23 Марта 2011 в 13:19, реферат
Статистика - самостоятельная общественная наука, изучающая количественную сторону массовых общественных явлений в неразрывной связи с их качественной стороной.
Статистика, изучающая вопросы, связанные с медициной и здравоохранением, носит название санитарной, или медицинской, статистики.
В последнее
время бурно развивается
Однако планирование
и проведение КИ без применения статистических
методов невозможно. Во всем мире этому
уделяется особое внимание. Для того
чтобы согласовать требования к
применению статистических методов
при проведении КИ, Международная
конференция по гармонизации технических
требований к регистрации лекарственных
препаратов для человека (ICH) в 1998 г.
приняла руководство «
Любое исследование необходимо планировать. По поводу важности планирования экспериментальных исследований Лотар Закс писал: «Так как плохо спланированный опыт малоинформативен, что нельзя исправить самой лучшей статистической техникой, то планирование эксперимента становится особо важным составным элементом статистики».
С точки зрения математической статистики при планировании КИ необходимо решить следующие вопросы:
· обеспечение репрезентативности выборки всей генеральной совокупности (по размеру и структуре);
· устранение возможных источников систематических ошибок и учет их влияния;
· выбор методов обработки данных, которые соответствуют поставленной цели и особенностям данных, которые анализируются.
Необходимо отметить, что применение знаний из области биостатистики требуется на следующих этапах планирования и проведения КИ:
· планирования;
· разработка протокола;
· разработка индивидуальной регистрационной карты (ИРК);
· статистическая обработкаи результатов;
· подготовка отчета.
Квалифицированное
выполнение комплекса работ, связанных
с применением методов
· участие в обсуждении плана (дизайна) испытания;
· обоснование и выбор метода распределения пациентов по группам;
· выбор соответствующих реальным ограничениям методов статистического анализа;
· обоснование и расчет количества испытуемых в зависимости от налагаемых реальностью ограничений.
Виды дизайна ( плана) КИ:
По определению, дизайн КИ -- это способ, схема его проведения. Данное понятие в области прикладной статистики близко к понятию плана эксперимента. В качестве основных дизайнов КИ можно назвать следующие: параллельный, перекрестный, факторный и последовательный.
Параллельным называется такой дизайн, в котором пациенты рандомизированы на две или более групп, а пациентам одной группы назначают одинаковое лечение. Этот вид дизайна обладает следующими преимуществами: широкий выбор методов анализа и менее сложные допущения, лежащие в его основе. Однако он не лишен и недостатков, к которым можно отнести: большую межгрупповую вариабельность и большой размер выборки.
Следующим, часто применяемым дизайном КИ, особенно при испытаниях на биоэквивалентность, на которых мы остановимся позже, является перекрестный дизайн.
Перекрестным
называется такой дизайн, в котором
каждому пациенту назначают два
или более терапевтических
Также широко применяется при проведении КИ факторный дизайн, в котором каждому пациенту назначают одну из возможных комбинаций нескольких методов лечения. С точки зрения теории планирования эксперимента он представляет в основном план полного факторного эксперимента. Если возможно и уместно, для экономии ресурсов желательно применять планы дробного факторного эксперимента или планы, которые базируются на равномерно распределенных псевдослучайных числах.
Факторный дизайн в основном применяют в следующих случаях:
· для оценки
двух или более методов лечения,
применяющихся в различных
· для определения
зависимости эффекта от дозы при
одновременном использовании
· для поиска наиболее эффективной комбинации доз нескольких совместно применяемых препаратов.
Значительную экономию средств получают там, где уместно использовать последовательный дизайн КИ. Последовательным называется такой дизайн, в котором пациенты включаются в исследование по одному, общая численность групп не определена заранее, а его окончание определяется правилом останова. Правило останова (последовательный анализ) -- это такое правило, согласно которому после включения нового объекта в исследование и пересчета критериальных значений принимается решение о принятии или отклонении нулевой гипотезы, а также, соответственно, о продолжении или прекращении проводимого исследования.
Преимущества
последовательного дизайна
· сложность расчета правила останова;
· необходимость
постоянного анализа для
· многие последовательные методы требуют попарного сравнения пациентов (специально подобранных пар, сравнимых по существенным для результатов испытания признакам). При этом каждый пациент должен ждать своей «пары», что не сокращает, а увеличивает время испытания;
· при применении последовательных методов теоретически желательно, чтобы следующий пациент («пара» или группа пациентов) был включен в испытание после того, как предыдущий его закончил. Это требует того, чтобы период наблюдения (лечения) каждого пациента был непродолжителен по сравнению с интервалом между включением пациентов в испытание;
· психологическо-этические недостатки: иногда приходится назначать пациенту препарат, который, по результатам предшествующих сравнений, оказался худшим (хотя требуемый уровень статистической значимости еще не достигнут). Правда, это относится и к другим методам испытания, когда в ходе исследования проводят промежуточный анализ его результатов.
В целом, методы
последовательного анализа
Следует отметить, что существуют различные разновидности последовательных испытаний:
a. последовательный анализ с открытым завершением, при котором исследование продолжается до тех пор, пока не будет накоплено достаточно данных, чтобы со всей очевидностью можно было отклонить или принять нулевую гипотезу;
b. последовательный анализ с закрытым завершением, при котором максимальный размер выборки ограничен и по мере накопления и анализа данных можно завершить исследование, не достигая запланированного объема выборки;
c. групповой последовательный анализ, при котором промежуточный анализ данных по группам пациентов проводится посредством запланированного количества интервалов, причем каждый интервал включает накопленные данные заданного количества выборок.
В общем виде алгоритм последовательного анализа можно представить следующим образом.
1. Выбрать в
качестве нулевой гипотезу об
отсутствии различий между
2. Определить
вероятность ошибок первого и
второго рода и,
3. Включение
в исследование нового пациента
(«пары» или группы пациентов
в зависимости от
4. Вычислить новое критериальное значение по мере поступления данных от вновь включенного пациента.
5. Сравнить вычисленное критериальное значение с критическим (или критическими, в зависимости от того, какой критерий применяется -- односторонний или двусторонний).
6. Если результат
сравнения удовлетворяет
7. Испытание
прекращается и принимается
ЗАКЛЮЧЕНИЕ
Прошли те времена, когда применение статистических методов в медицине и биологии ставилось под сомнение. Статистические подходы лежат в основе современного научного поиска, без которого познание во многих областях науки и техники невозможно. Невозможно оно и в области медицины.
Медицинская статистика
должна быть нацелена на решение наиболее
выраженных современных проблем
в здоровье населения. Основными
проблемами здесь, как известно, являются
необходимость снижения заболеваемости,
смертности и увеличения продолжительности
жизни населения. Соответственно, на
данном этапе основная информация должна
быть подчинена решению этой задачи.
Должны подробно приводиться данные,
характеризующие с разных сторон
ведущие причины смерти, заболеваемость,
частоту и характер контактов
больных с медицинскими учреждениями,
обеспечение нуждающихся
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
1. www.fictionbook.ru
2. www.ozon.ru
3. http://bmn.medstalker.com
4. История советской государственной статистики. Изд-е 2-е, перераб. и доп. - М.: Статистика, 1969. - 528 с. Раздел "Статистика здравоохранения и социального обеспечения" - С. 381-390.
5. Рябушкин Т.В. Международная статистика (организация и методология) - М.,1965. - 272 с.
6. http://www.statsoft.com;
7. http://www.biometrica.tomsk.ru