Информационные технологии в медицине

Автор работы: Пользователь скрыл имя, 24 Декабря 2014 в 07:22, реферат

Описание работы

В наше время повсеместно все с большим темпом во все сферы деятельности человечества входят компьютерные технологии. Лидирующие области по внедрению компьютерных технологий в быт человека являются бухгалтерия, различные складско-учетные программы. Темпы внедрения компьютерных технологий у нас в стране довольно высокие, этому есть простое пояснение: в нашей стране очень много квалифицированных специалистов по компьютерным технологиям, и пока не наблюдается нехватка этих специалистов (как это наблюдается в развитых странах, например в США)

Содержание работы

Введение
3
1.Медицинская информатика.
4
2. Классификация медицинских информационных систем.
4
3. Медицинские приборно-компьютерные системы.
6
4. Медицинская диагностика.
8
5. Системы для проведения мониторинга.
9
6. Системы управления лечебным процессом
10
7. Пути развития медицинских ИТ.
11
8. Телемедицина.
12
9. Рентгенологическая информационная система Ариадна
15
10. Информационные технологии в онкологии.
19
Выводы.
28
Библиография.
29

Файлы: 1 файл

ИТ в медицине.doc

— 153.50 Кб (Скачать файл)

Аппаратное обеспечение мониторных систем и аналогичных систем для функциональной диагностики принципиально практически не отличается. Важной особенностью мониторных систем является наличие средств экспресс-анализа и визуализации их результатов в режиме реального времени. Это позволяет отображать на экране монитора также динамику различных производных от контролируемых величин. Все это осуществляется в различных временных масштабах. Причем чем выше качество системы, тем больше возможностей наблюдения динамики контролируемых и связанных с ними показателей она предоставляет. Чаще всего мониторные системы используются для одновременного слежения за состоянием от одного до 6 больных, причем у каждого из них может изучаться до 16 основных физиологических параметров.

 

    1. Системы управления лечебным процессом

 

      К системам управления процессами лечения и реабилитации относятся автоматизированные системы интенсивной терапии, биологической обратной связи, а также протезы и искусственные органы, создаваемые на основе микропроцессорной технологии.

В системах управления лечебным процессом на первое место выходят задачи точного дозирования количественных параметров работы, стабильного удержания их заданных значений в условиях изменчивости физиологических характеристик организма пациента.

Под автоматизированными системами интенсивной терапии понимают системы, предназначенные для управления состоянием организма в лечебных целях, а также для его нормализации, восстановления естественных функций органов и физиологических систем больного человека, поддержания их в пределах нормы. По реализуемой в них структурной конфигурации системы интенсивной терапии разделяют на два класса – системы программного управления и замкнутые управляющие системы.

К системам программного управления относятся системы для осуществления лечебных воздействий. Например, различная физиотерапевтическая аппаратура, оснащенная средствами вычислительной техники, устройства для вливаний лекарственных препаратов, аппаратура для искусственной вентиляции легких и ингаляционного наркоза, аппараты искусственного кровообращения.

Замкнутые системы интенсивной терапии структурно являются более сложными МПКС, так как они объединяют в себе задачи мониторинга, оценки состояния больного и выработки управляющих лечебных воздействий. Поэтому на практике замкнутые системы интенсивной терапии создаются только для очень частных, строго фиксированных задач.

Системы биологической обратной связи предназначены для предоставления пациенту текущей информации о функционировании его внутренних органов и систем, что позволяет путем сознательного волевого воздействия пациента достигать терапевтического эффекта при определенном виде патологий.

 

    1. Пути развития медицинских информационных технологий

Медицинские информационные технологии включают в себя средства воздействия на организм внешними информационными факторами, описание способов и методов их применения и процесс обучения навыкам практической деятельности. Соответственно дальнейшее  развитие  этих технологий требует рассмотрения и решения следующих практических вопросов. На первом месте стоит насущный вопрос о необходимости широкого внедрения в клиническую практику апробированных средств и методов информационного воздействия, отвечающих таким требованиям, как безопасность и простота их использования, высокая терапевтическая эффективность их применения. Следующим актуальным вопросом является стимулирование и поощрение разработки и создания новых средств и методов воздействия на организм человека, соответствующих принципам и постулатам информационной медицины. Дальнейшее развитие и совершенствование данной области медицины связано с оптимизацией средств и методов обратной биологической связи при информационном воздействии, адекватных изменениям в организме в соответствии с принципами и постулатами информационной медицины.

Один из главных путей решения ряда медицинских, социальных и экономических проблем в настоящее время представляет информатизация работы медицинского персонала. К этим проблемам относится поиск действенных инструментов, способных обеспечить повышение трех важнейших показателей здравоохранения: качества лечения, уровня безопасности пациентов, экономической эффективности медицинской помощи. Базовым звеном информатизации является использование в больницах современных клинических информационных систем, снабженных механизмами поддержки принятия решений. Однако эти системы не получили широкого распространения, так как пока не разработаны научные и методологические подходы к созданию клинических информационных систем. 

 

    1. Телемедицина

 

По мнению большинства экспертов, прогнозирующих развитие науки и техники, 21 век должен стать «веком коммуникаций», что подразумевает повсеместное использование глобальных информационных систем. Использование таких систем в медицине открывает качественно новые возможности:

- обеспечение взаимодействия региональных клиник с крупными медицинскими центрами;

- оперативное получение результатов последних научных исследований;

- подготовка и переподготовка кадров.

Перечисленные возможности можно охарактеризовать одним общим понятием – телемедицина.

Телемедицина - это комплекс современных лечебно-диагностических методик, предусматривающих дистанционное управление медицинской информацией.

Возникновение телемедицины обычно связывают с врачебным контролем при космических полетах. Первоначально это было измерение показателей жизнедеятельности у животных на космических аппаратах, затем у космонавтов.

С появлением сетевых технологий телемедицина получила мощный импульс в своем развитии. Конкретной причиной прорыва телемедицины в практику послужило бурное развитие коммуникационных сетей, а также методов работы с информацией, позволивших обеспечить двух- и многосторонний обмен видео- и аудиоинформацией и любой сопроводительной документацией.

Простейшим случаем реализации возможностей телемедицины является быстрый доступ врача к необходимой справочной информации.

Основным приложением телемедицины является обслуживание тех групп населения, которые оказались вдали от медицинских центров или имеют ограниченный доступ к медицинским службам.

Другим важным объектом телемедицины является система диагностических центров регионов, когда необходима оперативная связь между лечащим врачом и врачом-диагностом, которые оказываются в разных лечебных учреждениях, часто разнесенных на большие расстояния.

Еще одним важным направлением телемедицины является скоропомощная ситуация и сложные случаи, когда требуется срочная консультация специалистов из центральных медучреждений для спасения больного или определения тактики лечения в сложных ситуациях, в том числе в крупнейших мировых медицинских центрах.

Следующим направлением является также дистанционное медицинское образование.

Наиболее перспективные тенденции в создании современных информационных систем можно объединить понятием «архитектура, обусловленная моделированием»(MDA) Философия этого подхода заключается в том, что в сложной системе невозможно предусмотреть все возможные сценарии, будущее развитие системы и т.д. Поэтому целесообразно разрабатывать некоторую общую для всех участников объектную модель и определять принципы ее наращивания и интеграции приложений в систему. MDA решает эти вопросы посредством разделения задач проектирования и реализации. Это позволяет быстро разрабатывать и внедрять новые спецификации взаимодействия, используя новые развернутые технологии, базирующиеся на достоверно проверенных моделях. Процесс создания информационных MDA представляет собой типичный сложившийся цикл разработки любого сложного информационного проекта: фаза выработки требований – фаза анализа – фаза реализации. В рамках каждой из фаз прорабатываются специфические для нее вопросы соответствия требованиям, согласованности и функциональности.

Современные информационные системы, как правило, разворачиваются в глобальных сетях типа сети Интернет. Не являются исключением и системы телемедицины. Время автономных, локальных приложений уходит в прошлое. Их место занимают информационные системы, характеризующиеся многообразием архитектур, многоплатформенностью, разнообразием форматов данных и протоколов.

 

 

 

 

    1. Рентгенологическая информационная система (РИС) Ариадна

 

РИС Ариадна (разработка ЗАО «Рентгенпром») обеспечивает большую часть требуемой ЛПУ (лечебно-профилактическим учреждения) функциональности. РИС Ариадна предназначена для автоматизации работы ЛПУ и охватывает регистратуру, отдел кадров, рабочие места врачей рентгенолога и фтизиатра, рабочее место медицинского статистика и процесс обследования пациентов в рентгенологическом кабинете.

РИС Ариадна состоит из БД, форм для просмотра, ввода и редактирования информации, системы отчётов для анализа и предоставления в вышестоящие организации и программы просмотра снимков.

Система разработана на основе новейших информационных технологий в среде Oracle 8i с использованием Oracle Designer и Oracle Developer, что позволяет расширять и углублять приложение в зависимости от нужд заказчика и в дальнейшем при добавлении новых функциональностей. В основе приложения лежит реляционная база данных Oracle 8i, которая обеспечивает хранение и контроль связанной, структурированной информации о пациентах, учреждениях, персонале ЛПУ и пр. Сервер Oracle обеспечивает многопользовательский режим работы с информацией, что позволяет работать с БД одновременно десяткам и сотням пользователей. Доступ к информации в базе данных авторизованный, а система защиты обеспечивается сервером Oracle. Иначе говоря, конфиденциальные данные о пациенте может видеть и менять только лечащий врач или другое допущенное администрацией лицо. При этом ведётся аудит записей в БД, что означает знание того, когда и кем сделана или изменена запись в БД.

В приложении дополнительно предусмотрена организация защиты информации от несанкционированного доступа на основе ролей пользователей. Администратор системы может определить необходимое количество ролей пользователей, и назначить им привилегии на доступ к определенным видам информации с различной степенью доступа:

- полный доступ;

- запрет доступа;

- доступ только для  чтения, без возможности корректировки.

В системе РИС используется многооконный интерфейс, что позволяет пользователю одновременно открывать несколько форм с различной информацией. Например, врач может вести приём по журналу и открывать карточки пациентов для просмотра той или иной клинической информации.

Главное меню системы представляет собой «древовидный» список. В приложении предусмотрена возможность формирования этого списка администратором системы без программирования. Таким образом, можно сформировать любое автоматизированное рабочее место (АРМ) из уже имеющихся форм и отчётов. Формы для ведения и просмотра справочников могут помещаться в любой выбранный АРМ, как с полным доступом, так и с доступом только на чтение. В рекомендуемой конфигурации можно выделить следующие разработанные рабочие места пользователей: отдел кадров, регистратура, врач рентгенолог, врач фтизиатр, статистик ЛПУ, рабочее место лаборанта рентгеновского кабинета.

В АРМ отдела кадров и регистратуры ведётся вся справочная информация по персоналу, пациентам, их местам проживания, предприятиям, участкам и типам учёта. В регистратуре заводится расписание приёма врачей, и производится запись пациентов на приём. Этот список врач в тот же момент видит на своём рабочем месте. АРМ отдела кадров позволяет вести учёт персонала клиники. При этом сохраняется вся историческая информация о назначениях сотрудников и их продвижениях по службе.

АРМ врача рентгенолога содержит все необходимые для него справочники, журнал пациентов, сделавших рентгеновские снимки, карточку пациента и форму для просмотра очереди на приём. Просмотр и описание снимков врач может делать в любое удобное для него время. При этом он может одновременно смотреть медицинскую карту пациента и сравнивать с предыдущими снимками. Карточка пациента для каждого врача разрабатывается целенаправленно согласно требованиям и уровню доступа данного врача. Во всех медицинских картах пациентов отражены общие сведения о человеке: дата рождения, пол, место проживания, место работы и т. д. Для рентгенолога выводится информация обо всех сделанных снимках с их описаниями и проставленными диагнозами. Отдельная ветвь меню выделена для отчётов рентгенолога. Отчёты подразделяются на списочные и статистические. Списочные отчёты используются врачами для просмотра выделенных контингентов больных, а статистические для выявления общих тенденций и анализа заболеваемости. Так для рентгенолога в списочном отчёте можно найти общую дозу, полученную пациентом за заданный период. А в статистическом отчёте можно смотреть количества выявленных заболеваний определённого типа и оценивать эффективность выявления по признакам впервые и при обращении к врачу или на профилактическом осмотре. Следует отметить, что в отчётах всегда отражается текущая информация на данный момент времени.

Для АРМ фтизиатра разработаны свои отчёты. В медицинской карте пациента фтизиатр имеет доступ к гораздо больше информации, чем рентгенолог. Он может смотреть все диагнозы и заболевания пациента, результаты анализов и госпитализации, сведения о группах риска, вести диспансерный учёт. Для врача фтизиатра разработаны соответствующие списочные, статистические отчеты.

Информация о работе Информационные технологии в медицине