Дыхательная система человека

Автор работы: Пользователь скрыл имя, 07 Мая 2013 в 16:36, реферат

Описание работы

Целью данной работы является изучение дыхательной системы человека.
Задачи работы:
Изучение анатомии и физиологии дыхательной системы;
Изучение аппарата регуляции дыхания.

Содержание работы

Введение……………………………………………………………………..……
3
1.
Дыхательная система человека……………………………………………...
4
2.
Верхние дыхательные пути………………………………………………….
5
3.
Нижние дыхательные пути………………………………………………….
6

3.1. Гортань…………………………………………………………………...
6

3.2. Трахея и бронхи………………………………………………………….
9

3.3. Легкие…………………………………………………………………….
10

3.4. Плевра……………………………………………………………………
13

3.5. Средостение……………………………………………………………...
15
4.
Физиология дыхания…………………………………………………………
16

4.1. Газообмен и транспорт газов…………………………………………...
17

4.2. Регуляция дыхания………………………………………………………
19
Заключение…………………………………………………………………………
21
Список литературы……………………

Файлы: 1 файл

Дыхсистема ГОТОВО.docx

— 49.07 Кб (Скачать файл)

Задняя граница легких проходит вдоль позвоночника от II ребра. Передняя граница (проекция переднего края) берет начало от верхушек легких, проходит почти параллельно на расстоянии 1,0-1,5 см на уровне хряща IV ребра. В этом месте граница левого легкого отклоняется влево на 4- 5 см и образует сердечную вырезку. На уровне хряща VI ребра передние границы легких переходят в нижние.

В легком выделяют три поверхности: выпуклую реберную, прилегающую к внутренней поверхности стенки грудной полости; диафрагмальную - прилегает к диафрагме; медиальную (средостенную), направленную в сторону средостения. На медиальной поверхности находятся ворота легкого, через которые входят главный бронх, легочная артерия и нервы, а выходят две легочные вены и лимфатические сосуды. Все вышеперечисленные сосуды и бронхи составляют корень легкого.

Каждое легкое бороздами делится  на доли: правое - на три (верхнюю, среднюю и нижнюю), левое - на две (верхнюю и нижнюю).

Большое практическое значение имеет  деление легких на так называемые бронхолегочные сегменты; в правом и в левом легком по 10 сегментов. Сегменты отделяются один от другого соединительнотканными перегородками (малососудистыми зонами), имеют форму конусов, верхушка которых направлена к воротам, а основание - к поверхности легких. В центре каждого сегмента расположены сегментарный бронх, сегментарная артерия, а на границе с другим сегментом - сегментарная вена.

Каждое легкое состоит из разветвленных  бронхов, которые образуют бронхиальное дерево и систему легочных пузырьков. Вначале главные бронхи делятся  на долевые, а затем и на сегментарные. Последние в свою очередь разветвляются  на субсегментарные (средние) бронхи. Субсегментарные бронхи также делятся на более мелкие 9-10-го порядка. Бронх диаметром около 1 мм называется дольковым и вновь разветвляется на 18-20 конечных бронхиол. В правом и левом легком человека насчитывается около 20 000 конечных (терминальных) бронхиол. Каждая конечная бронхиола делится на дыхательные бронхиолы, которые в свою очередь делятся последовательно дихотомично (на две) и переходят в альвеолярные ходы.

Каждый альвеолярный ход заканчивается  двумя альвеолярными мешочками. Стенки альвеолярных мешочков состоят  из легочных альвеол. Диаметр альвеолярного  хода и альвеолярного мешочка  составляет 0,2-0,6 мм, альвеолы - 0,25-0,30 мм.

Дыхательные бронхиолы, а также альвеолярные ходы, альвеолярные мешочки и альвеолы легкого образуют альвеолярное дерево (легочный ацинус), которое является структурно-функциональной единицей легкого. Количество легочных ацинусов в одном легком достигает 15 000; количество альвеол в среднем составляет 300-350 млн., а площадь дыхательной поверхности всех альвеол - около 80 м2.

Для кровоснабжения легочной ткани  и стенок бронхов кровь поступает  в легкие по бронхиальным артериям из грудной части аорты. Кровь от стенок бронхов по бронхиальным венам отходит в протоки легочных вен, а также в непарную и полунепарную вены. По левой и правой легочным артериям в легкие поступает венозная кровь, которая обогащается кислородом в результате газообмена, отдает углекислый газ и, превратившись в артериальную кровь, по легочным венам стекает в левое предсердие.

Лимфатические сосуды легких впадают в бронхолегочные, а также в нижние и верхние трахеобронхиальные лимфоузлы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. Плевра

 

 

Плевра (pleura) - тонкая гладкая серозная оболочка, которая окутывает каждое легкое.

Различают висцеральную плевру, которая плотно срастается с тканью легкого и заходит в щели между долями легкого, и париетальную, которая выстилает внутри стенки грудной полости. В области корня легкого висцеральная плевра переходит в париетальную.

Париетальная плевра состоит из реберной, медиастинальной (средостенной) и диафрагмальной плевры. Реберная плевра покрывает внутреннюю поверхность ребер и межреберных промежутков, около грудины и сзади около позвоночного столба переходит в медиастинальную плевру. Вверху реберная и медиастинальная плевра переходят одна в другую и образуют купол плевры, а внизу они переходят в диафрагмальную плевру, которая покрывает диафрагму, кроме центральной части, где диафрагма соединяется с перикардом.

Таким образом, между париетальной и висцеральной плеврой образуется щелевидное замкнутое пространство - плевральная полость. В этой полости находится небольшое количество серозной жидкости, которая увлажняет листки плевры при дыхательных движениях легких. В местах перехода реберной плевры в диафрагмальную и медиастинальную образуются углубления - плевральные синусы. Эти синусы являются резервными пространствами правой и левой плевральных полостей, а также вместилищем для накопления плевральной жидкости при нарушении процессов ее образования и усвоения.

Между реберной и диафрагмальной плеврой  находится реберно-диафрагмальный синус; в месте перехода медиастинальной плевры в диафрагмальную - диафрагмо-медиастинальный синус, а в месте перехода реберной плевры в медиастинальную образуется реберно-медиастинальный синус.

Площадь париетальной плевры больше, чем висцеральной. Левая плевральная  полость длиннее и уже, чем  правая. Верхняя граница плевры выступает  на 3-4 см выше за I ребро. Сзади плевра опускается до уровня головки XII ребра, где переходит в диафрагмальную плевру. Спереди на правой стороне плевра идет от грудино-ключичного сустава и опускается до VI ребра и переходит в диафрагмальную плевру. Слева париетальная плевра проходит параллельно правому листку своей плевры до хряща IV ребра, затем отклоняется влево и на уровне VI ребра переходит в диафрагмальную. Нижняя граница плевры представляет собой линию перехода реберной плевры в диафрагмальную. Она пересекает VII ребро среднеключичной линии, IX - по средней подмышечной, затем идет горизонтально, пересекая Х и XI ребра, подходит к позвоночному столбу на уровне шейки XII ребра, где нижняя граница переходит в заднюю границу плевры.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5. Средостение

 

 

Средостение (mediastinum) представляет собой комплекс органов, расположенных между правой и левой плевральными полостями. Спереди средостение ограничено грудиной, сзади - грудным отделом позвоночного столба, с боков - правой и левой медиастинальной плеврой. Вверху средостение продолжается до верхней апертуры грудной клетки, внизу - до диафрагмы. Различают два отдела средостения: верхнее и нижнее.

В верхнем средостении находятся вилочковая железа, правая и левая плечеголовные вены, верхняя полая вена, дуга аорты и отходящие от нее сосуды (плечеголовной ствол, левая общая сонная и подключичная артерии), трахея, верхняя часть пищевода, соответствующие отделы грудного лимфатического протока правого и левого симпатических стволов, проходят блуждающий и диафрагмальный нервы.

В нижнем средостении находятся перикард с расположенными в нем сердцем, крупными сосудами, главные бронхи, легочные артерии и вены, лимфатические узлы, нижняя часть грудной аорты, непарная и полунепарная вены, средний и нижние отделы пищевода, грудной лимфатический проток, симпатические стволы и блуждающие нервы.

 

 

 

 

 

 

 

 

 

 

4. Физиология дыхания

 

 

Жизнедеятельность живого организма  связана с поглощением им кислороды (О2) и выделением углекислого газа (СО2). Поэтому в понятие «дыхание» входят все процессы, связанные с доставкой О2 из внешней среды внутрь клетки и выделением СО2 из клетки в окружающую среду.

У человека различают дыхание:

  • внутреннее (клеточное, тканевое);
  • транспорт газов кровью или другими жидкостями тела;
  • внешнее (легочное).

Фактически все звенья газотранспортной системы организма, включая регуляторные механизмы, призваны обеспечить концентрацию кислорода в клетках, необходимую для поддержания активности дыхательных ферментов.

Человек в состоянии покоя вдыхает  и выдыхает около 500 мл воздуха. Этот объем воздуха называется дыхательным. Если после спокойного вдоха сделать усиленный дополнительный вдох, то в легкие может поступить еще 1500 мл воздуха. Такой объем называют резервным объемом вдоха. После спокойного выдоха при максимальном напряжении дыхательных мышц можно выдохнуть еще 1500 мл воздуха. Этот объем носит название резервного объема выдоха. После максимального выдоха в легких остается около 1200 мл воздуха - остаточный объем. Сумма резервного объема выдоха и остаточного объема составляет около 250 мл - функциональную остаточную емкость легких (альвеолярный воздух). Жизненная емкость легких - это в сумме дыхательный объем воздуха, резервный объем вдоха и резервный объем выдоха (500 + 1500 + 1500).

Жизненную емкость легких и объем  легочного воздуха измеряют при  помощи специального прибора - спирометра (или спирографа).

 

 

4.1. Газообмен и транспорт  газов

 

 

Перенос О2 из альвеолярного воздуха в кровь и СО2 из крови в альвеолярный воздух происходит исключительно путем диффузии. Движущей силой диффузии является разница парциального давления О2 и СО2 по обеим сторонам альвеолокапиллярной мембраны. Кислород и углекислый газ диффундируют через слой тонкой пленки фосфолипидов (сурфактанта), альвеолярный эпителий, две основные мембраны, эндотелий кровеносного капилляра. Диффузионная способность легких для кислорода значительная. Это обусловлено большим количеством альвеол и их значительной газообменной поверхностью, а также небольшой толщиной (около 1 мкм) альвеолокапиллярной мембраны. Время прохождения крови через капилляры легких составляет около 1 сек., напряжение газов в артериальной крови, которая оттекает от легких, полностью соответствует парциальному давлению в альвеолярном воздухе. Если вентиляция легких недостаточная и в альвеолах увеличивается содержание СО2, то уровень концентрации СО2 сразу же повышается в крови, что приводит к учащению дыхания.

В легких кровь из венозной превращается в артериальную, богатую О2 и бедную СО2. Артериальная кровь поступает в ткани, где в результате беспрерывно проходящих процессов используется О2 и образуется СО2. В тканях напряжение О2 близко к нулю, а напряжение СО2 около 60 мм рт. ст. В результате разности давления СО; из ткани диффундирует в кровь, а О2 - в ткани. Кровь становится венозной и по венам поступает в легкие, где цикл обмена газов повторяется вновь.

Газы очень слабо растворяются в жидкостях. Так, только небольшая  часть О2 (около 2%) растворяется в плазме, а СО2 – 3-6%. Основная часть гемоглобина транспортируется в форме непрочного соединения гемоглобина, который содержится в эритроцитах. В молекулу этого дыхательного пигмента входят специфический белок - глобин и простетическая группа - гем, которая содержит двухвалентное железо. При присоединении кислорода к гемоглобину образуется оксигемоглобин, а при отдаче кислорода - дизоксигемоглобин. Например, 1 гр. гемоглобина способен связать 1,36 мл газообразного О2 (при атмосферном давлении). Если учесть, что в крови человека содержится около 15 % гемоглобина, то 100 мл его крови могут перенести до 21 мл О2. Это так называемая кислородная емкость крови. Оксигенация гемоглобина зависит от парциального давления О2 в среде, с которой контактирует кровь. Сродство гемоглобина с кислородом измеряется величиной парциального давления кислорода, при которой гемоглобин насыщается на 50 % (Р50); У человека в норме она составляет 26,5 мм рт. ст. для артериальной крови.

Гемоглобин особенно легко соединяется с угарным газом СО с образованием карбоксигемоглобина, не способного к переносу О2. Его химическое сродство к гемоглобину почти в 300 раз выше, чем к О2. Так, при концентрации СО в воздухе, равной 0,1 %, около 80 % гемоглобина крови оказывается в связи не с кислородом, а с угарным газом. Вследствие этого в организме человека возникают симптомы кислородного голодания (рвота, головная боль, потеря сознания). Легкая степень отравления угарным газом является обратимым процессом: СО постепенно отщепляется от гемоглобина и выводится при дыхании свежим воздухом. При концентрации СО, равной 1 %, через несколько секунд наступает гибель организма.

Углекислый газ обладает способностью вступать в разные химические связи, образуя в том числе и нестойкую  угольную кислоту. Это обратная реакция, которая зависит от парциального давления СО2 в воздушной среде. Она резко увеличивается под действием фермента карбоангидразы, который находится в эритроцитах, куда СО2 быстро диффундирует из плазмы. Около 4/5 углекислого газа транспортируется в виде гидрокарбоната НСО-3. Связыванию СО2 способствует снижение кислотных особенностей гемоглобина. Угольная кислота в тканевых капиллярах реагирует с ионами натрия и калия, образуя бикарбонаты (NaHCО-3, КНСО-3). Углекислый газ транспортируется к легким в физически растворенном виде и в непрочном химическом соединении в виде карбогемоглобина, угольной кислоты и бикарбонатов калия и натрия. Около 70 % его находится в плазме, а 30 % в эритроцитах.

4.2. Регуляция дыхания

 

 

В соответствии с метаболическими потребностями  дыхательная система обеспечивает газообмен О2 и СО2 между окружающей средой и организмом. Эту жизненно важную функцию регулирует сеть многочисленных взаимосвязанных нейронов ЦНС, расположенных в нескольких отделах мозга и объединяемых в комплексное понятие «дыхательный центр». При воздействии на его структуры нервных и гуморальных стимулов происходит приспособление функции дыхания к меняющимся условиям внешней среды. Структуры, необходимые для возникновения дыхательного ритма, впервые были обнаружены в продолговатом мозге. Перерезка продолговатого мозга в области дна IV желудочка приводит к прекращению дыхания. Поэтому под главным дыхательным центром понимают совокупность нейронов специфических дыхательных ядер продолговатого мозга.

Кроме того, к звену аппарата регуляции  дыхания относятся хеморецепторные и механорецепторные системы, обеспечивающие нормальную работу дыхательного центра в соответствии с потребностями организма в обмене газов. К дыхательным нейронам относятся нервные клетки, импульсная активность которых изменяется в соответствии с фазами дыхательного цикла. Различают инспираторные нейроны, которые активны только в фазе вдоха, и экспираторные, активные во время выдоха.

Информация о работе Дыхательная система человека