Біологіологічна хімія

Автор работы: Пользователь скрыл имя, 03 Января 2011 в 19:37, реферат

Описание работы

Біологіологічна хімія – це наука, що розкриває хімічні основи життєдіяльності організму.

Предметом вивчення є:

1.якісний і кількісний хімічний склад живих організмів;
2.перетворення речовин, що входять до складу організму і надішли до нього ззовні в процесі клітинного метаболізму;
3.взаємозвязок процнсів перетворення хімічних речовин з функціями організму в нормі й при різних станах (спортивної діяльності, патології, вплив радіації та інших факторів зовнішнього середовища).

Содержание работы

1.Біль в м’язах (крепатура):
a.Визначення
b.Причини та механізми виникнення
c.Гіпотеза про ушкоджений м’яз
d.Гіпотеза про ушкодження сполучної тканини
e.Гіпотеза про метаболічне нагромадження
f.Гіпотеза про молочну кислоту
g.Гіпотеза про локалізований спазм рухових одиниць
2.Молочна кислота: друг чи ворог:
a.Лактатний поріг
b.Метаболічна розвилка
3.Профілактика болю в м’язах
Висновок

Список використаної літератури

Файлы: 1 файл

биохимия.doc

— 1.36 Мб (Скачать файл)
  1. інтенсивність скорочення в момент, коли  м’яз перебуває в скороченому стані;
  2. м’язові скорочення, що вкл.чають різкі або некоординовані рухи. В цьому випадку деякі волокна можуть тимчасово піддаватися надмірному навантаженню, якщо повне навантаження діє на м’яз до того, як відбулося  рекрутирування  достатнього числа рухових одиниць;
  3. активність, що включає повторення того самого руху протягом тривалого періоду часу;
  4. балістичні рухи, оскільки наприкінці такого руху його припинення здійснюється м’язом і його сполучними тканинами, що викликає рефлекторні скорочення в той момент, коли  м’яз форсовано подовжується.

     Однак з моменту досліджень  де Вріеса були досягнуті значні  успіхи в області технологій, що дозволило науково обгрунтувати  дану гіпотезу, що є, швидше за все, найбільш вірною. За останні 25 років було зроблено безліч фотографій, з яких ясно видно ушкодження внутрішньої структури саркомера після фізичного навантаження (мал.1.1). на фотографіях чітко видно ушкодження Z-ліній. 

  

Мал.1.1. Електронна мікрофотографія, що ілюструє нормальне (звичайне) розташування філаментів актину й міозину й конфігурацію Z-диска в м’язі бігуна перед марафонським забігом (а). Зразок  м’яза, взятий відразу після завершення марафонської дистанції (видно ушкодження сакромера (б)) 

 а                             б  
 

  

 Мал.1.2, а. Схематичне зображення  передбачуваного розташування цитоскелетних елементів в сакромері і довкола неї 

     Отримані результати показують, що під час надмірного навантаження Z-лінії виявляються потенційною слабкою ланкою в скорочувальному ланцюжку міофібрил (мал.1.2, а і б). В обох сакромерах показане розташування проміжних філаментів, що складають, головним чином, з білка десміна, які зв’язують сусідні міофібрили вздовж і впоперек в Z-лінії й оточують її подвійною структурою. На верхньому сакромері показане розташування небуліна, що проходить паралельно актину в І-диску. На нижньому сакромері показане можливе місцезнаходження титина, що розтягує на всю довжину сакромера і прикріплюється до міозину в А-диску. Показано схематичне зображення передбачуваних впливів інтенсивного фізичного навантаження на екзосакромерну систему проміжних філаментів. 

 

Мал. 1.2,б  Схематичне зображення передбачуваних впливів інтенсивного фізичного  навантаження на екзосаркомерну систему  проміжних філаментів 

     Вгорі – перед виконанням фізичного навантаження проміжні філаменти проходять між дотичними міофібрилами, з’єднуючи їх в Z-лінію і М-лінію, зберігаючи осьову структуру. Внизу після фізичного навантаження більшість міжміофібрилярних з’єднань руйнуються і Z-лінії втрачають свою поперечну структкру. Деякі Z-лінії повністю зникають, подвійна структура проміжних філаментів розщеплюється, що призводить до утворення нових саркомерів. Міозин нерідко втрачає своє центральне розташування в сакромері (мал1.2.б).

     Для перевірки вірності цієї гіпотези використовували також біохімічне тестування. Ебрахем аналізував взаємозв’язок між СВМБ і виділенням міоглобіну із сечею. Вважається, що міоглобін виводиться з  м’яза в судинну систему під час м’язової травми. Результати, отримані вченим, виявилися непереконливими. 

   Гіпотеза про ушкоджену  сполучну тканину

    Крім скорочувальної тканини, у м’язі може ушкоджуватися і сполучна тканина. Результати досліджень, проведених Ебрахемом, підтверджують теорію, відповідно до якої виникнення СВМБ тісно пов’язане з подразненням сполучної тканини. Проведені дослідження продемонстрували наявність значної позитивної кореляції між концентрацією гідроксипроліна в сечі і суб’єктивній появі больових відчуттів в м’язах. Гідроксипролін – маркер продукту розпаду сполучної тканини і індикатор метаболізму коланену. Талсон і Армстронг також знайшли докази взаємозв’язку між больовими відчуттями в м’язах  і подразненням або ушкодженням сполучної тканини. Припущення основане на тому факті, що ступінь пошкодження сполучних тканин виявляється вище після ексцентричних скорочень, внаслідок впливу на них більш пасивної напруги. 

Гіпотеза  про метаболічне  нагромадження

   Відстрочене виникнення больових  відчуттів в  м’язах також пов’язують з нагромадженням побічних продуктів метаболізму, включаючи молочну кислоту (побічний продукт анаеробного метаболізму), калій (позаклітинний) та інші метаболіти, які призводять до підвищення осмотичного тиску всередині і зовні м’язових волокон. Це, в свою чергу, сприяє затримці гідратації, і, як наслідок, виникненню набряків і відчуттю тиску на чутливі нерви.

    Стауберг висловив припущення, що дискомфорт і набряк, що виникають при відстроченому виникненні  больових відчуттів в м’язах, нагадують синдром міні-компартмента і що позаклітинний простір – головний сприяючий фактор. Фриден, Сфакіанос і Харгенс в своїх дослідженнях спостерігали збільшення тиску тихорєцької рідини в м’язах, що скорочувалися ексцентрично.хауел з своїми колегами запропонували порівняти м’яз з балоном, наповненим водою й поміщеним в нейлонову панчоху. „Наявність балона запобігає розтягування панчохи на всю довжину. Точно так рідина в набряку, що перебуває в тривимірній матриці ендомізія, перимізія і епімізія, буде обмежувати їх розтягання”. Саме підвищений обсяг рідини робить вплив пасивної напруги на панчоху. З цією напругою зв’язані відчуття болю, набряку і тугорухливості. Хауел з колегами висловили також припущення, що повільне розтягування з подоланням початкового бар’єра тугорухливості може „являти собою процес вижимання води з матрикса прим’язової сполучної тканини в інтерфасціальній площин”.

    Слід відзначити цілий ряд проблем, що виникають у зв’язку з висунутими припущеннями. Найсильніші больові відчуття в м’язах, як правило, після фізичних навантажень, що включають вмконання ексцентричної роботи, під час якої в момент скорочення м’яз подовжується. Результати досліджень показують, що ексцентричні скорочення пов’язані з меншим споживанням енергії або кисню, чим концентричні. Крім того, в ряді досліджень більш висока електроміографічна (ЕМГ) активність відзначена при виконанні концентричної роботи з певним навантаженням, на відміну від ексцентричної. І нарешті, припущення про те, що підвищений внутрішньом’язовий тиск є причиною больових відчуттів, спростовують Д.А. Джонс, Ньюхем, Облетер і Джиамберардіно. Підставою для цього є факт, що під час ізометричних скорочень внутрішньом’язовий тиск може збільшитися до кількох сотень міліметрів ртутного стовпа. Однак цей тиск не відчувається як больовий. Більше того, навіть в больових м’язах ізометричні скорочення не збільшують больових відчіттів. 

Гіпотеза  про молочну кислоту

    Одне з перших і найбільш  популярних пояснень негайного  або відстроченого виникнення  больових відчуттів в м’язахзвязують із нагромадженням  продуктів розпаду, і особливо молочної кислоти. Молочна кислота – побічний продукт метаболізму і утворюється тільки при відсутності кисню. Отже, її нагромадження відбувається при недостатньому кровопостачанні м’язів. Таким чином, молочна кислота не є чинником, що обумовлює больові відчуття після пасивних вправ і більшості програм статичного розтягування. 

Гіпотеза  про локалізований  спазм рухових  одиниць

   Як затверджується в численних роботах де Вріеса, відстрочені локалізовані больові відчуття в м’язах, що виникають післявиконання незвичного фізичного навантаження, зумовлені тонічним, локалізрваним спазмом рухових одиниць, число яких коливається залежно від ступеня больових відчуттів:

  1. фізичне навантаження, що перевищує мінімальний рівень, призводить до певного ступеня ішемії (тобто тимчасового дефіциту кровопостачання) в активному м’язі;
  2. ішемія викликає біль в м’язі. Ймовірно, вона виникає в результаті передачі певної больової субстанції через мембрани м’язової клітини в тихорєцьку рідину, з якої одержує доступ до больових закінчень;
  3. результуючий біль згодом викликає захисне, рефлекторне, тонічне м’язове скорочення;
  4. тонічне скорочення потім викликає локалізовані ділянки ішемії в м’язовій тканині і, таким чином, виникає замкнуте коло, що веде до локального, тонічного м’язового спазму.

    Використовуючи спеціально розроблене устаткування, де Вріес виявив позитивний взаємозв’язок між ступенем обумовлених фізичним навантаженням больових відчуттів і рівнем електричної активності  м’яза. Він також виявив, що статичне розтягування приносить симптоматичне полегшення, а також виклкає істотне зниження електричної активності у больових  м’язах. 

    При спробі повторити експеримент де Вріеса, Ебрахем не зумів виявити значні зміни ЕМГ в результаті обумовлених больових відчуттів в м’язах. Не зуміли підтвердити результати де Вріеса також Таланг, Торген і Ньюхем з колегами. Більш того, згідно сучасним даним, наявність підвищеної електричної активності в розслаблених больових м’язах представляється малоймовірним. Це вказує на необхідність проведення додаткових досліджень. 

Молочна кислота: друг чи ворог?

      Вживані нами вуглеводи складаються  з молекул декількох різних  цукрів: сахарози, фруктози, глюкози  й ін. Однак, поки печінка робить свою роботу, всі ці цукри перетворюються в глюкозу, що може бути засвоєна всіма клітинами. М'язові волокна одержують глюкозу і або використовують її негайно, або запасають у формі довгих глюкозних ланцюжків, називаних глікогеном. Під час тренування глікоген розпадається до глюкози, що потім проходить через послідовність ензиматичних реакцій, що не вимагає кисню. Всі ці реакції відбуваються в середовищі клітини або в цитозолі. Вони можуть відбуватися дуже швидко й утворювати деяку кількість АТФ. Цей шлях називається анаеробним гліколізом (безкисневим  розщепленням глюкози). Кожна окрема молекула глюкози повинна пройти цю послідовність реакцій, щоб поглинути корисну енергію й перетворитися в АТФ, енергетичну молекулу, що підтримує м'язові скорочення й всі інші енергозалежні клітинні функції.

     Метаболічна  розвилка

      Існує критична метаболічена  розвилка на кінці цього хімічного  шляху. На цій розвилці глюкоза  перетворюється з однієї молекули  з 6 атомами вуглецю у дві  з 3 атомами, називані піруватом. Цей піруват може пройти в мітохондрії через ензим піруватдегідрогеназу або перетворитися в молочну кислоту через ензим лактатдегідрогеназу. Влучення в мітохондрії відкриває піруват для подальшого розщеплення ензимами, окислювання й великого виходу АТФ із глюкози. Перетворення в лактат означає тимчасове припинення процесу вироблення енергії й потенціал для стискаючої втоми через зниження клітинного pН, якщо процес нагромадження молочної кислоти не зупинити. Як лист, що пливе по ріці, молекула пірувата не має "права голосу", у якому напрямку метаболізму рухатися.

     У якому напрямку піруват буде рухатися при навантаженні?

     Я впевнена, що це - основне питання,  що має великий вплив на  результати змагань. Я постараюся  відповісти на нього на трьох  рівнях: окреме м'язове волокно, цілий м'яз, активний під час вправ і цілий організм, що тренується. 

     Працююча м'язова клітина

     В окремому м'язовому волокні,  що скорочується, частоту й тривалість  скорочень будуть визначати потреба  в АТФ. Ця потреба буде задовольнятися за рахунок використання двох ресурсів енергії: жирних кислот і молекул глюкози (поки ігноруємо невеликий внесок білків). Як тільки потреба в АТФ збільшується, зростає темп руху глюкози в гліколітичному шляху. Тому при високих навантаженнях всередині окремого м'язового волокна швидкість виробництва пірувату буде дуже висока. Якщо у волокні багато мітохондрій (а значить, більше піруватдегідрогенази), піруват буде більшою мірою перетворюватися в ацетил-кофермент  й переміщатися в мітохондрії при відносно невеликому виробництві лактату. Додатково, метаболізм жирних кислот забезпечує більшу частину потреби в АТФ. Метаболізм жирів зовсім не робить лактат! Лактат, що вийшов при розщепленні глюкози, буде дифундувати з місць  з високою концентрацією всередині м'язової клітини до низької концентрації поза м'язовим волокном і в позаклітинну рідину, а потім у капіляри. 

     Цілий працюючий м'яз

     Тепер давайте поглянемо на  м'яз в цілому, наприклад, vastus lateralis, м'яз групи чотириглавих при  їзді на велосипеді. При низькому навантаженню гліколітичний потік низький і піруват, що виходить, в основному рухається в мітохондрії для окисного розщеплення. Оскільки навантаження мале, активні в основному повільні волокна. Ці волокна мають багато мітохондрій. Коли навантаження зростає, задіється більше волокон, і в них більш  тривалий робочий цикл. Тепер потреба в АТФ зростає в раніше активних волокнах, приводячи до більш  високого темпу утворення пірувату. Більша частка її тепер перетворюється в молочну кислоту, а не попадає в мітохондрії, завдяки конкуренції відповідних ензимів. Тим часом, починають працювати деякі швидкі рухові одиниці. Це збільшує лактатний потік з м'яза через меншу кількість мітохондрій у цих волокнах. Швидкість появи лактату в крові наростає.

Информация о работе Біологіологічна хімія