Автор работы: Пользователь скрыл имя, 05 Февраля 2015 в 11:17, творческая работа
Переменная величина называется случайной, если в результате опыта она может принимать действительные значения с определёнными вероятностями. Наиболее полной, исчерпывающей характеристикой случайной величины является закон распределения. Закон распределения – функция (таблица, график, формула), позволяющая определять вероятность того, что случайная величина Х принимает определенное значение хi или попадает в некоторый интервал. Если случайная величина имеет данный закон распределения, то говорят, что она распределена по этому закону или подчиняется этому закону распределения.
Версия шаблона |
2.1 |
ЦДОР |
Самарский |
Вид работы |
Творческое эссе |
Название дисциплины |
Математические методы в психологии |
Тема |
Законы распределения случайной величины |
Фамилия |
Авдеева |
Имя |
Ольга |
Отчество |
Александровна |
№ контракта |
03908110701001 |
Переменная величина называется случайной, если в результате опыта она может принимать действительные значения с определёнными вероятностями. Наиболее полной, исчерпывающей характеристикой случайной величины является закон распределения. Закон распределения – функция (таблица, график, формула), позволяющая определять вероятность того, что случайная величина Х принимает определенное значение хi или попадает в некоторый интервал. Если случайная величина имеет данный закон распределения, то говорят, что она распределена по этому закону или подчиняется этому закону распределения.
Случайная величина Х называется дискретной, если существует такая неотрицательная функция
которая ставит в соответствие значению хi переменной Х вероятность рi , с которой она принимает это значение.
Случайная величина Х называется непрерывной, если для любых a < b существует такая неотрицательная функция f ( x ), что
Функция f ( x ) называется плотностью распределения непрерывной случайной величины. Вероятность того, что случайная величина Х (дискретная или непрерывная) принимает значение, меньшее х, называется функцией распределения случайной величины Х и обозначается F ( x ) :
Функция распределения является универсальным видом закона распределения, пригодным для любой случайной величины.
Общие свойства функции распределения:
Кроме этого универсального, существуют также частные виды законов распределения: ряд распределения (только для дискретных случайных величин) и плотность распределения (только для непрерывных случайных величин).
Основные свойства плотности распределения:
Каждый закон распределения – это некоторая функция, полностью описывающая случайную величину с вероятностной точки зрения. На практике о распределении вероятностей случайной величины Х часто приходится судить только по результатам испытаний. Повторяя испытания, будем каждый раз регистрировать, произошло ли интересующее нас случайное событие А, или нет. Относительной частотой (или просто частотой) случайного события А называется отношение числа nA появлений этого события к общему числу n проведенных испытаний. При этом мы принимаем, что относительные частоты случайных событий близки к их вероятностям. Это тем более верно, чем больше число проведенных опытов. При этом частоты, как и вероятности, следует относить не к отдельным значениям случайной величины, а к интервалам. Это значит, что весь диапазон возможных значений случайной величины Х надо разбить на интервалы. Проводя серии испытаний, дающих эмпирические значения величины Х, надо фиксировать числа nx попаданий результатов в каждый интервал. При большом числе испытаний n отношение nx / n (частоты попадания в интервалы) должны быть близки к вероятностям попадания в эти интервалы. Зависимость частот nx / n от интервалов определяет эмпирическое распределение вероятностей случайной величины Х, графическое представление которой называется гистограммой (рис. 1).
Рис. 1. Гистограмма и выравнивающая плотность распределения
Для построения гистограммы по оси абсцисс откладывают интервалы равной длины, на которые разбивается весь диапазон возможных значений случайной величины Х , а по оси ординат откладывают частоты nx / n. Тогда высота каждого столбика гистограммы равна соответствующей частоте. Таким образом, получается приближенное представление закона распределения вероятностей для случайной величины Х в виде ступенчатой функции, аппроксимация (выравнивание) которой некоторой кривой f (x) даст плотность распределения. Однако, часто бывает достаточно указать только отдельные числовые параметры, характеризующие основные свойства распределения. Эти числа называются числовыми характеристиками случайной величины.
Биномиальное распределение (дискретное)
X - количество «успехов» в последовательности из независимых случайных экспериментов, таких что вероятность «успеха» в каждом из них равна . .
Закон распределения имеет вид:
|
0 |
1 |
….. |
k |
….. |
|
|
|
|
|
|
Здесь вероятности находятся по формуле Бернулли:
Характеристики: , , Примеры многоугольников распределения для и различных вероятностей:
Пуассоновское распределение (дискретное)
Распределение Пуассона моделирует случайную величину, представляющую собой число событий, произошедших за фиксированное время, при условии, что данные события происходят с некоторой фиксированной средней интенсивностью и независимо друг от друга.При условии закон распределения Пуассона является предельным случаем биномиального закона. Так как при этом вероятность события A в каждом испытании мала, то закон распределения Пуассона называют часто законом редких явлений.
Ряд распределения:
|
0 |
1 |
….. |
k |
….. |
|
|
|
….. |
|
….. |
Вероятности вычисляются по формуле Пуассона: .
Числовые характеристики: , ,
Разные многоугольники распределения при .
Показательное распределение (непрерывное)
Экспоненциальное или показательное распределение — абсолютно непрерывное распределение, моделирующее время между двумя последовательными свершениями одного и того же события.
Плотность распределения:
Где .
Числовые характеристики: , ,
Плотность распределения при различных значениях .
Равномерное распределение (непрерывное)
Равномерный закон распределения используется при анализе ошибок округления при проведении числовых расчётов (например, ошибка округления числа до целого распределена равномерно на отрезке [-0,5; 0,5]), в ряде задач массового обслуживания, при статистическом моделировании наблюдений, подчинённых заданному распределению.
Плотность распределения:
Числовые характеристики: , ,
График плотности вероятностей:
Нормальное распределение или распределение Гаусса (непрерывное). Нормальное распределение, также называемое распределением Гаусса, – распределение вероятностей, которое играет важнейшую роль во многих областях знаний, особенно в физике. Физическая величина подчиняется нормальному распределению, когда она подвержена влиянию огромного числа случайных помех. Ясно, что такая ситуация крайне распространена, поэтому можно сказать, что из всех распределений в природе чаще всего встречается именно нормальное распределение — отсюда и произошло одно из его названий.
Плотность распределения: Нормальный закон распределения случайной величины с параметрами и называется стандартным или нормированным, а соответствующая нормальная кривая - стандартной или нормированной. Функция Лапласа . Вероятность отклонения нормально распределенной случайной величины на величину от математического ожидания (по модулю).
.
№ п/п |
Наименование интернет-ресурса |
Ссылка на конкретную используемую страницу интернет-ресурса |
1 |
matburo.ru |
http://www.matburo.ru/tv_spr_ |
2 |
simumath.net |
http://www.simumath.net/ |
3 |
kemsu.ru |
http://umk.portal.kemsu.ru/ |