Автор работы: Пользователь скрыл имя, 24 Марта 2010 в 01:35, Не определен
Первое же знакомство с вычислительными машинами специалистов, работавших в области кибернетики, привело к тому, что эти технические устройства нашли новые области применения, отличные от решения вычислительных задач. Довольно быстро стало ясно, что ЭВМ – это не просто быстро работающий арифмометр, а нечто большее. Способ кодирования информации в ЭВМ обладал универсальностью. Кодировать в виде двоичных машинных слов можно было не только числа, но и. целые последовательности символов, имеющих нечисловую природу (в частности слова естественного языка, последовательности нотных знаков, запись ходов в шахматной партии и т.п.). Набор операций, автоматически выполнявшихся в ЭВМ, также обладал широкими возможностями. Преобразования, осуществляемые над машинными кодами, можно было интерпретировать не только, как операции над числами, но и как определенного вида символьные преобразования.
Другая точка зрения на создание интеллектуальных систем может быть названа нейробионической. Авторы, исповедующие ее, исходят из того, что для моделирования феномена мышления надо техническими средствами воссоздать тот нейрофизиологический субстрат, который породил мышление в органической природе. В середине 50-х годов появились первые модели простейших рефлекторных механизмов, в основе которых лежали модели нейронов. На основе этих простейших механизмов путем их объединения стали моделировать более сложные поведенческие реакции. Достаточно полный обзор этого начального этапа нейробионических исследований дан в [30]. То, что такой подход может порождать модели, обладающие достаточно сложным поведением, демонстрирует работа [31]. Описанный в ней автомат, созданный группой ученых под руководством Н.М.Амосова, способен передвигаться по незнакомой местности, изучая и запоминая ее особенности, способен регистрировать другие движущиеся в среде объекты и классифицировать их действия как дружелюбные или опасные. Эти и ряд других функций автомата формируются путем обучения, в основе которого лежат процессы усиления-торможения, протекающие на сети из искусственных нейронов. В [32] изложены общие принципы моделирования интеллекта, опирающиеся на идеи, частично воплощенные в тележке-автомате из [31]. Наиболее последовательное изложение программы развития нейробионического направления дано М.Арбибом [32].
Исследования процессов мышления, осуществленные в 70-х годах, привлекли внимание специалистов к проблеме асимметрии мозга. Выявленные особенности работы правого и левого полушария позволили выдвинуть гипотезу о том, что в интеллектуальной деятельности человека тесно переплетаются как бы два типа мышления, которые условно можно назвать левосторонним и правосторонним. Левосторонний тип мышления характеризуется следующими особенностями: информация, с которой он имеет дело, состоит из отдельных информационных единиц, организованных в виде последовательностей, основные типы операций над этой информацией носят символьно-логический характер, процедуры имеют алгоритмический характер, возможна вербализация всех проводимых операций, т.к. все они проводятся под контролем сознания. Правосторонний тип мышления характеризуется иными особенностями: информация, с которой он имеет дело, состоит из нерасчленяемых целостных комплексов, в которых информационные единицы связаны между собой системой разнородных отношений, причем эти комплексы образуют пространственно организованные "картины", основные операции над которыми носят ассоциативно-топологический характер и не вербализуются.
Между двумя типами мышления (иногда их метафорически называют алгебраическим и геометрическим) и двумя подходами к построению интеллектуальных систем (информационным и нейробионическим) имеется явная аналогия. Во всяком случае, использование ЭВМ демонстрирует все особенности левостороннего типа мышления, перечисленные выше. Это, по мнению большинства специалистов, работающих в области искусственного интеллекта, резко ограничивает возможности интеллектуальных программ и ставит проблему создания технических устройств, конструкция которых позволяла бы воспроизводить не последовательный процесс переработки символов, а одновременное протекание многих сложно взаимодействующих между собой во времени и пространстве процессов. То, что такой путь может приводить к эффективному решению задач, которые не могут столь же эффективно воспроизводиться на обычных ЭВМ, было продемонстрировано еще в конце 50-х годов Ф.Розенблаттом (США), предложившим устройство под названием "перцептрон". Подобные устройства, в состав которых входили нейроподобные элементы, функционирующие параллельно, могли быть использованы после обучения для мгновенного (симультанного) распознавания зрительных, образов. Эта процедура носит четко выраженный правосторонний характер и перцептроны демонстрировали ее успешное воспроизведение [34]. Ряд общетеоретических вопросов и оценки возможностей перцептронов были разработаны М.Минским и С.Пейпертом (США) [35]. В настоящее время, к сожалению, в искусственном интеллекте нет продвинутых исследований в области создания достаточно богатых по своим возможностям устройств, которые позволяли бы моделировать иные, весьма многочисленные механизмы мышления правополушарного типа.
III. Создание теоретической базы
Начальный этап развития исследований в области интеллектуальных программ подготовил к концу 60-х годов почву для возникновения новой парадигмы в области подобных исследований. Специалисты, работавшие в этой области, стали склоняться к мнению, что успех их исследований зависит не от того, насколько успешно та или иная программа решает конкретную интеллектуальную задачу, а от понимания общих принципов построения таких программ. Эти общие принципы должны развиваться в рамках специального научного направления – теории интеллектуальных программ или теории искусственного интеллекта, которая с конца 60-х годов стала пониматься именно таким образом.
В 1969 году в Вашингтоне состоялась Первая международная конференция по искусственному интеллекту (IJCAI). После этого регулярно раз в два года эти конференции стали повторяться. Их место проведения чередуется так, что конференции с нечетными номерами проводятся на американском континенте, а конференции с четными номерами – на других континентах. Эти международные форумы сыграли решающую роль в формировании методологии новой науки и выявлении областей ее приложения. Количество их участников выросло от нескольких сот, присутствующих на первых конференциях, до 4-5 тысяч участников, характерных для последних встреч. В 1976 г. начал издаваться международный журнал "Искусственный интеллект". В эти же годы в различных странах, где возрастала активность исследований в области интеллектуальных систем, стали издаваться национальные и международные журналы, посвященные отдельным проблемам ИИ или проблемам всей области в целом. В странах социалистического лагеря роль такого объединяющего исследователей международного органа выполнял издаваемый с 1982 г. в Братиславе (ЧССР) журнал "Вычислительные машины и искусственный интеллект".
В
течение 70-х годов сложились основные
теоретические направления
1. Представление знаний. Многие специалисты по интеллектуальным системам считают это направление работ основным. Именно появление знаний в памяти ЭВМ позволило, по их мнению, всерьез говорить о появлении "интеллекта" в программах, реализуемых на ЭВМ. До этого при решении задач на ЭВМ проблема заключалась в написании той процедуры, которую нужно было реализовать на машине, и ее переводе на язык, понятый ЭВМ (т.е. программировании). При появлении в памяти ЭВМ всех необходимых знаний о некоторой фиксированной проблемной области ЭВМ становится способной на основании этих знаний сама синтезировать программы, необходимые для решения поставленных перед ней задач. Другими словами, труд программиста выполняет сама ЭВМ, а человек общается с ней таким же способом, как он это делает, когда общается со своим коллегой по работе.
Представление знаний как ведущее направление в ИИ решает следующие задачи: а) как собрать знания о проблемной области и, в частности, как получить с помощью опроса эти знания от специалистов в данной области; б) как представить эти знания в базе знаний в форме, удобной для последующей обработки на ЭВМ; в) как сохранить непротиворечивость и достичь полноты знаний при объединении знаний, получаемых из различных источников; г) как классифицировать собранные знания и как обобщать их в процессе накопления; д) как их использовать при решении различных задач. Из этого перечисления видно, что при работе со знаниями надо рассматривать как теоретические, так и практические вопросы. Совокупность задач первого типа образует множество проблем теории представления знаний, а совокупность задач второго типа - множество проблем прикладной науки, получившей в искусственном интеллекте название "инженерия знаний" (специалисты, работающие в этой области, подготовка которых усиленными темпами ведется во многих странах, называются инженерами по знаниям или просто инженерами знаний).
В теории представления знаний изучаются формальные системы, которые могут быть использованы при представлении знаний. Среди них наиболее популярными оказались семантические сети, фреймы, сценарии, продукционные системы и разного рода логические исчисления (чаще всего это исчисление предикатов первого порядка). В обзорной работе [36] можно найти оценку современного состояния исследований в области различных моделей представления знаний. Понятие фрейма впервые было введено М.Минским в работе [37], сценарии подобно описаны Р.Шенком (США) в [38], а продукционные системы в [36]. Семантические сети как бы обобщают все эти формы представления знаний [36].
Преобразования знаний, выполняемые в тех или иных моделях их представления, носят, как правило, логический характер. В связи с этим в теории представления знаний большое внимание уделяется созданию специальных логических систем для работы со знаниями [27, 36]. В СССР, в частности, разрабатываются так называемые псевдофизические логики (Д.А.Поспелов, А.С.Нариньяни и др.), предназначенные для описания закономерностей, отражающих временной, пространственный или каузальный аспект действий, совершаемых в реальном физическом мире.
2. Общение. Вторым большим направлением в ИИ являются исследования, касающиеся создания интеллектуальных программ, способных к организации антропоморфного общения интеллектуальной системы с пользователем. Чаще всего имеется в виду общение на ограниченном естественном языке, когда сообщения вводятся в ЭВМ в виде письменного текста или в виде последовательности речевых сигналов, а ответ интеллектуальной системы либо высвечивается на экране дисплея, либо формируется с помощью речевого синтезатора. Исследуется также способ общения, опирающийся на рисование пиктограмм (картинок), но чаще такой способ общения включается в качестве вспомогательного в общение первого типа. В результате интенсивных исследований в области вопросно-ответных и диалоговых систем специалисты по искусственному интеллекту создали теорию таких систем и в настоящее время интеллектуальные системы оказываются способными на имитацию достаточно развитых форм общения с пользователем [36, 39].
3. Рассуждения и планирование. Третье направление в работах по искусственному интеллекту связано с созданием и исследованием различных логических систем, способных воспроизводить в интеллектуальных системах особенности человеческих рассуждений при решении разнообразных задач. В нем рассматриваются проблемы принятия решений в альтернативных ситуациях, а также нахождения и обоснования планов целесообразной деятельности при решении задач, формируемых пользователем или возникающих, как промежуточные, в процессе деятельности интеллектуальных систем [3, 36, 40].
4. Восприятие. Мы уже говорили, что в свое время распознавание образов оказало некоторое влияние на исследования по интеллектуальным системам. Теория распознавания образов в дальнейшем стала развиваться отдельно от работ в области ИИ. Но между ними появилась пограничная область – машинное восприятие, в которой методы каждой из наук переплетаются между собой. К восприятию относятся те задачи обработки зрительных образов, которые для своего решения требуют использования знаний. Такие знания, в частности, используются при анализе и описании трехмерных сцен, в которых отдельные объекты могут закрывать другие или тени, возникающие из условий освещенности, сцен, могут искажать общую картину и т.д. Подобные задачи характерны для тех интеллектуальных систем, которые в процессе своей деятельности должны много контактировать с реальным миром. Но и на уровне информационных представлений о зрительных объектах такие задачи возникают весьма часто [41, 42].
5. Обучение. В отличие от методов и моделей, описанных в ранее упоминавшейся монографии [23], методы, исследуемые в теории обучения интеллектуальных систем, активно опираются на знания. Поэтому, как и восприятие, обучение интеллектуальных систем есть пограничная область между науками, развивающимися вне сферы искусственного интеллекта, и теми методами, которые характерны для интеллектуальных систем. Как правило, методы последнего типа – это процедуры обучения на основании использования информации о подтверждении или неподтверждении некоторых гипотез фактами, хранящимися в базе знаний интеллектуальных систем. Это позволяет считать, что в них развиваются идеи, которые были использованы в упоминавшихся ранее исследованиях [11,24].
6.
Деятельность. В этой части теории
продолжают активно развиваться исследования
в области решения комбинаторных и игровых
задач, характерных еще для первого этапа
развития работ в области ИИ, а также эвристического
программирования [42]. Только на данном
этапе развития ИИ происходит осмысление
постановок задач в этой области с точки
зрения того уровня, который уже достигнут
в интеллектуальных системах [43]. А этот
уровень стал уже настолько высок, что
и в области ИИ стали возникать собственные
программные и инструментальные средства.
Стали возникать и новые формы деятельности,
ранее не встречавшиеся в области интеллектуального
программирования. Все это знаменовало
наступление нового этапа в развитии искусственного
интеллекта.
Информация о работе Возникновение и перспективы создания искусственного интеллекта