Автор работы: Пользователь скрыл имя, 12 Ноября 2009 в 19:06, Не определен
курсовик VBA
Dim CurrentPlan As String
Dim i As Integer
Cycle = False
CurrentPlan = “”
For i = 1 To AmRest
CurrentPlan = CurrentPlan & CStr(MiCiXiAi(i, 3))
Next i
If InStr(AllPlans, CurrentPlan) > 0 Then
If DirectCycle = True Then
DirectCycle = False
Else
Cycle = True
End If
AllPlans = “”
Else
AllPlans = AllPlans & ” ” & CurrentPlan
End If
End Function
В данной работе рассматриваются два способа решения исходной задачи линейного программирования.
Первый заключается в том, что сначала решается вспомогательная задача (L-задача), позволяющая построить начальный опорный план, затем на основе этого найденного плана решается исходная задача (определяется ее оптимальный план). Второй способ является объединением двух этапов и состоит в решении расширенной задачи (M-задачи), также приводящей к нахождению оптимального плана исходной задачи.
Вычислительную основу этих двух способов решения составляют соответственно первый и второй алгоритмы симплекс-метода. Один из параметров, по которому может быть оценен любой итерационный алгоритм – количество шагов, приводящих к решению задачи или установлению ее неразрешимости. Для данной задачи наиболее эффективным методом оказался первый метод(L-задача + исходная задача), т.к. он привел к решению за 4 шага, а второй метод (M-задача) за 5 шагов. Разница в числе шагов, вероятно, обусловлена неоднозначность выбора разрешающего элемента в исходной таблице L-задачи.
Сравнение количества вычислений на каждой итерации приводит к следующим оценочным результатам рассматриваемых алгоритмов. Преимущественная часть вычислений на каждом шаге алгоритмов определяется размерностью главной части таблицы (в первом алгоритме) или основной таблицы (во втором алгоритме). В первом случае она имеет размерность (m+1)x(n+1), во втором - (m+1)x(m+1). Даже учитывая, что второй алгоритм требует построения вспомогательной таблицы, он оказывается более компактным.
Еще
одно несомненное достоинство