Автор работы: Пользователь скрыл имя, 08 Ноября 2009 в 18:55, Не определен
Ряды динамики. Классификация динамических рядов
Оценка параметров
(a0, a1, a2, ...) осуществляется
следующими методами:
1) методом избранных точек,
2) методом наименьших расстояний,
3) методом наименьших квадратов (МНК).
В большинстве расчетов используют метод наименьших квадратов, который обеспечивает наименьшую сумму квадратов отклонений фактических уровней от выравненных:
Для линейной зависимости (f(t)=a0+a1t) параметр а0 обычно интерпретации не имеет, но иногда его рассматривают как обобщенный начальный уровень ряда; а1 – сила связи, т.е. параметр, показывающий, насколько изменится результат при изменении времени на единицу. Таким образом, а можно представить как постоянный теоретический абсолютный прирост. Построив уравнение регрессии, проводят оценку его надежности. Это делается посредством критерия Фишера (F). Фактический уровень (Fфакт) сравнивается с теоретическим (табличным) значением:
где k – число
параметров функции, описывающей тенденцию;
n – число уровней ряда;
Fфакт сравнивается с Fтеор при v1 = (k-1), v2 = (n-k) степенях свободы и уровне значимости a (обычно a = 0,05). Если Fфакт > Fтеор, уравнение регрессии значимо, т.е. построенная модель адекватна фактической временной тенденции.
Выравнивание проведено по линейной трендовой модели. Оценка параметров уравнения выполнена методом наименьших квадратов.
Таким образом, f(t) = уt = 10,128-0,073t для t= -13, -11, -9, ..., +13, или f(t) = уt = 11,077-0,1461 для t = 0, 1, ..., 13.
Параметры последнего
уравнения регрессии можно
В качестве примера рассмотрим число зарегистрированных браков на 1000 жителей России за период с 1977 по 1990 г.:
|
Следующий шаг аналитического выравнивания – оценка надежности уравнения регрессии:
Таким образом, Fтеор = 4,747; a = 0,05; v1 (k-1) = 1; v2 = (n-k) = 12 и Fтеор = 9,330 при a = 0,01, v1 = 1, v2 = 12.
Fфакт > Fтеор, и уравнение прямой адекватно отражает сложившуюся в исследуемом ряду динамики тенденцию.