Развитие математики в России в XVIII и XIX столетиях

Автор работы: Пользователь скрыл имя, 30 Ноября 2009 в 16:30, Не определен

Описание работы

История математики

Файлы: 1 файл

Математика.doc

— 80.00 Кб (Скачать файл)

       Остроградский скончался  в 1861 году от  злокачественной  язвы.

       По сравнению с Остроградским  способности  Буняковского  были гораздо более скромными.  Его  работы  относятся  уже  к  другой области  анализа.  Его  интересуют   главным   образом   вопросы теоретические.  Большая  часть  работ  Буняковского   в   первую половину его деятельности относится к теории чисел. эта отрасль математики  по  своему  характеру существенно   отличается   от анализа.  В то  время,  как анализ  гармонично  развивается и отличается  естественной  последовательностью   своих   законов, теория   чисел   отличается   удивительной   причудливостью    и своеобразием  отдельных  ее  истин.  Большинство   других   работ Буняковского относится к  теории  вероятностей.  Он  написал  по этому предмету обширный трактат "Основания математической теории вероятностей".  В  этой  книге  автор  старается  осветить  круг вопросов, еще далеко не  поддающихся  математической  обработке. Буняковский посвятил  много  труда  и  практическим  приложениям теории  вероятностей  к  русской  статистике.  На  основе    его разработок  были  установлены  нормы  воинского   набора.Влияние Буняковского, как преподавателя, было  очень  велико.  Благодаря его мягкому  характеру  и  отзывчивому  сердцу,  он  пользовался большой симпатией. 

       Буняковский  и   Остроградский  были   учениками   французских математиков и остались верными их заветам в течение  всей  своей деятельности.  В  это  время  появляется  Лобачевский,   который исповедовал   принципиально    другую    теоретическую    основу математики. Если Буняковского можно  признать  человеком  весьма одаренным, а Остроградского выдающимся талантом,  то  на  трудах Лобачевского лежит печать гения.

       Деятельность  Лобачевского  неразрывно  связана   с   историей  казанского университета, который был   открыт  в  1805  году.  На кафедру чистой математики был приглашен Бартельс, товарищ Гаусса На кафедру прикладной  математики  был приглашен приват-доцент геттингенского университета Реннер, а на  кафедру астрономии  известные ученые Литров и Броннер.

       Н.И.Лобачевский родился в 1793  году.  В  1802  году  он  был принят в казанскую гимназию, а в 1807 - в университет. Здесь  он работал главным  образом  под  руководством  Бартельса,  который очень скоро обратил внимание на  выдающиеся  дарования  молодого человека.    Лобачевскому посчастливилось     больше, чем Остроградскому, и уже в 1811 году  Совет  университета,  согласно представлению  Бартельса,  Литрова  и  Броннера,   признал   его магистром математики. С этого времени и начинается  его  научная деятельность. В 1814 году Лобачевский был назначен  адъюнктом,  а в 1816 г. - профессором казанского университета. Еще в  1812  году Бартельс представил совету  его  работу  "Теория  эллиптического движения небесных тел". Лобачевским была также написана работа о решении двучленных уравнений. Но не к этим  отраслям  математики относятся  его  выдающиеся  заслуги.  Внимание  этого  глубокого мыслителя  было  сосредоточено  на  других   вопросах,   имеющих многовековую историю.

       Как и сотни  других математиков,  Лобачевский  заинтересовался постулатом Евклида. Дело сводится к  тому,  что  две  прямые  на плоскости, одна из которых  перпендикулярна  секущей,  а  другая наклонена к ней под острым углом, необходимо должны  пересечься. Но доказать эту аксиому  никто  не  мог.  Как  и  многие  другие математики,  Лобачевский  начал  с  того,  что   предложил   два доказательства  этого  постулата,  но  вскоре  он  вынужден  был убедиться,что доказательства эти не выдерживают критики. Это  не заставило, однако, оставить этот вопрос. Напротив, он  продолжал настойчиво искать доказательство этого постулата. Как и многие из его предшественников на этом пути, Лобачевский пытался вести доказательство  от  противного.  Иными словами,   он   старался доказать, что противоположное предположение  должно  обязательно привести к абсурду. Он допускает, следовательно, что в  одной  и той же плоскости перпендикуляр и наклонная к  секущей  могут  не пересекаться. Если  бы  ему  удалось  прийти  к  противоречию  с остальными  аксиомами  Евклида,  то  этим  была  бы   обнаружена неправильность  сделанного  допущения,  т.е.  был   бы   доказан постулат Евклида. Тонко разматывая выводы из этого  допущения  и не позволяя себе поверить в кажущееся противоречие,  Лобачевский постепенно  пришел  к  выводу,  что   такого   противоречия   не существует. Напротив, он пришел к убеждению, что возможна другая геометрия, совершенно отличная от нашей геометрии,  в  которой сохраняются все остальные постулаты Евклида, кроме  постулата  о параллельных   линиях,   который   заменяется  противоположным утверждением. С нашей точки зрения  эта  геометрия  находится  в глубоком противоречии. Каждое ее положение представляется полным абсурдом, когда мы пытаемся связать ее с нашими  представлениями о пространстве. Но в ней нет внутреннего противоречия  между  ее выводами и исходными  предположениями.  Лобачевский  развил  эту геометрию до тех же  пределов,  до  которых  доведена  Евклидова геометрия. Она имеет свою  тригонометрию  и  свою  аналитическую геометрию.  Именно  в  том   обстоятельстве,   что   Лобачевский разрабатывал  свою  систему,  совершенно  не   имея   конкретных образов, на которых он мог бы проверить  свои  выводы,  доверяя, таким образом, исключительно тонкому анализу отвлеченной  мысли, и выразилась сила его гения.

       12 февраля 1826 года  Лобачевский   изложил   свои   идеи   на заседании     физико-математического     факультета     казанского университета. Странные  взгляды   молодого  математика  встретили мало  сочувствия  среди   его  товарищей.  По-видимому,  вследствие этого Лобачевский не торопился опубликовывать их. И только через три года он издал статью, содержащую первое в печати  изложение новых идей. Но его надеждам на то, что печатное  изложение его открытий даст возможность математикам  с  ними  познакомиться  и вызовет их  сочувствие,  не  суждено  было  осуществиться.  Надо сказать, что в этом отношении значительная доля вины падает и на самого  Лобачевского.  Своеобразные  идеи   требовали   особенно тщательного и ясного  изложения.  Между  тем,  эта  теория  была изложена чрезвычайно  сжато  и  статья  читалась  очень  трудно. Появление ее вызвало резкие отклики в печати. Среди  решительных противников Лобачевского был  и  Остроградский.  Желая,  однако, добиться признания своих творений,  Лобачевский  опубликовал  на эту тему ряд сочинений, в которых он изложил новую  геометрию  с исчерпывающей полнотой. Однако, в 1837 году в  популярном  в  то время  журнале  "Сын  Отечества"  появилась  анонимная   статья, называющая работы Лобачевского сплошной  нелепостью.  Возражение же его не было  напечатано.  Многие  полагают,  что  эта  статья принадлежала Остроградскому. В 1837  году  Лобачевский  перевел свои работы на французский язык, а в 1840 - на немецкий.

       На этот раз  статьи не прошли незамеченными. Их прочитал Гаусс и в письмах к своим друзьям отзывался о них восторженно.  Но  он остался верен своему решению не высказываться  печатно  о  новой геометрии.  О  его  взглядах   на   работы   Лобачевского   были осведомлены лишь весьма  немногие  люди.  Правда,  в  1842  году Лобачевский     по     инициативе     Гаусса     был      избран членом-корреспондентом Геттингенского ученого общества  и  Гаусс лично написал Лобачевскому  об  этом  избрании.  Однако,  в  этом письме он ничего не сказал о своем отношении к  этому  предмету. Гауссу нельзя не поставить  в  упрек,  что  по  его  вине  жизнь Лобачевского  превратилась  в  глубокую  трагедию.   Современник Лобачевского, венгерский  математик  Болье,  сын  старого  друга Гаусса, пришел к той же геометрии независимо от  Лобачевского  и опубликовал ее в приложениях к сочинению своего отца. Но  то  же отношение Гаусса довело Болье до глубокого отчаяния.

       Какой же вывод  вытекает из работ   Лобачевского  прежде  всего  относительно  Евклидова  постулата?  Если  бы  постулат  удалось доказать, то  это  свидетельствовало  бы, что противоположное постулату допущение несовместимо с остальными посылками  Евклида и находится с ними в противоречии. Если же  такого  противоречия нет, если противоположное допущение в совокупности с  остальными постулатами  Евклида  приводит  к  системе  логически  столь  же правильной, что и геометрия  Евклида,  то  отсюда  следует,  что доказать знаменитый  постулат  невозможно.  Конечно,  чтобы  это утверждение не вызывало никаких сомнений,  его  нужно  тщательно обосновать, что в наше время уже осуществлено.

       Когда скончался  Гаусс и была  опубликована  его   переписка   с друзьями, то  на работы Лобачевского  и Болье ввиду  содержащихся о  них  восторженных  отзывов   было   обращено   внимание.   Перед читателями, вникшими в труды этих  гениальных  людей,  открылся целый новый мир, произведший полный переворот в наших воззрениях на сущность геометрических аксиом, на источники их познания,  на методы обоснования геометрии.  Литература  по  этому  предмету быстро   разрослась   и   трудами   талантливых    учеников    и последователей Лобачевского и Болье те темные  стороны  вопроса, которые так затрудняли понимание новых идей,  были  выяснены,  а результаты этих исследований широко развиты.

        Сам  Лобачевский   не  дожил   до  признания   своих  идей.   Он скончался в  1856 году. Перед самой  смертью, уже потеряв   зрение, он еще  раз продиктовал  новую обработку  своих идей под  заголовком "Пангеометрия".

         В первой половине XIX столетия не выработалась  преемственная школа  русских  математиков , но  молодая  русская   математика  уже  в первый

    период  своего развития дала выдающихся  представителей  в  различных отраслях этой трудной науки, один  из  которых  уже  в первой половине столетия вписал  свое  имя  в  историю   человеческой мысли.

Информация о работе Развитие математики в России в XVIII и XIX столетиях