Развитие инженерной деятельности в России

Автор работы: Пользователь скрыл имя, 06 Февраля 2015 в 12:21, реферат

Описание работы

Цель работы: определить основные этапы компьютеризации инженерной деятельности в ХХ веке.
Объект исследования: процессы компьютеризации инженерной деятельности.
Предмет исследования: инженерная деятельность.

Файлы: 1 файл

2. Этапы компьютеризации инженерной деятельности ХХ в..docx

— 45.14 Кб (Скачать файл)

 

 

Оглавление

 

 

Введение

В XVI-XVII вв. идеи инженерии и развития техники на основе инженерной деятельности были всего лишь замыслом и воплощались в отдельных практических образцах. Но по мере развития новой науки и инженерии, а в XIX-XX вв. - индустриального производства, целиком опирающегося на инженерию и проектирование, - облик нового технического мира становится все более ощутимым.

Среди источников и детерминантов, определяющих функционирование и развитие техники, важное место занимает научно-инженерная картина мира, сложившаяся в конце XIX - начале XX в. Картина мира представляет собой образ той действительности, из которой, как непосредственно данной, исходит специалист. Научно-инженерная картина мира включает в себя некий сценарий. Существует природа, мыслимая в виде бесконечных процессов, энергий. Ученые описывают в естественных науках законы природы и строят соответствующие теории. Опираясь на эти законы и теории, инженер изобретает, конструирует, проектирует инженерные изделия (машины, механизмы, сооружения). Массовое производство, опираясь на инженерию, производит вещи, продукты, необходимые человеку и обществу. В начале этого цикла стоят ученый и инженер -творцы вещей, в конце - их потребители. В соответствии с традиционной научно-инженерной картиной мира считается, что познание и инженерная деятельность не влияют на природу, из законов которой инженер исходит, что техника как результат инженерной деятельности не влияет на человека, поскольку является созданным им средством, что потребности естественно растут, расширяются и всегда могут быть удовлетворены научно-инженерным путем.

Становление инженерной деятельности, реальности и научно-инженерной картины мира не было бы столь успешным, если бы инженерная деятельность не оказалась эффективной. Эффективность инженерной деятельности проявилась при создании как отдельных инженерных изделий, так и более сложных технических систем. Если Гюйгенс сумел создать инженерным способом часы, то сегодня таким способом создаются здания, самолеты, автомобили и бесконечное количество других необходимых человеку вещей. По сути, самолет есть сложная техническая система, но, например, еще сложнее АЭС, ускорители или космические комплексы. Во всех этих случаях инженерный подход к решению проблем демонстрирует свою эффективность.

Цель работы: определить основные этапы компьютеризации инженерной деятельности в ХХ веке.

Объект исследования: процессы компьютеризации инженерной деятельности.

Предмет исследования: инженерная деятельность.

Задачи:

1. Изучить процесс  развития инженерной деятельности  в России;

2. Определить  основные этапы компьютеризации  инженерной деятельности в ХХ  веке;

3. Рассмотреть  актуальные инженерные проблемы  ХХ-ХХI вв.

 

1. Развитие инженерной деятельности в России

Инженерная профессия всегда была основой мирового развития. Уровень технического оснащения еще до начала нашей эры определял превосходство одной цивилизации над другими. Технические инновации позволяли высвобождать ресурсы, которые ранее были необходимы для производства, что способствовало общему развитию общества в социальном, культурном плане. И сегодня именно технические новшества обеспечивают развитие цивилизации в целом. 

В России очень сложно определить точную дату появления первых инженеров. По некоторым данным это 5-6 век нашей эры.

В послевоенные годы инженер становится ключевой профессией в советском союзе. открываются новые инженерно-технические вузы, увеличивается число студентов и выпускников-инженеров. Одновременно государство активно способствует развитию научной базы. В итоге именно в послевоенные годы в СССР было сформирована основа инженерного сообщества, традиции которого пытаются возродить современные российские инженеры.

В 1954 году существовавшие в СССР НИТО были реорганизованы в массовые научно-технические общества (НТО) по отраслям производства. Количество обществ сократилось до 21, для всех организаций был разработан единый устав. Вся деятельность обществ по-прежнему курировалась центральным комитетом. Очевидно, именно такой подход и позволил СССР реализовать инженерный потенциал, имевшийся в стране. Единые задачи и приоритеты, верное направление развития научно-технического общества, стали залогом высокого качества инженерной деятельности в СССР [11, с. 197].

Упадок советского инженерного сообщества начался в 80-х годах XIX века. Высокие темпы прироста количества инженеров-выпускников в 70-80-е годы способствовали обесцениванию их труда, расширительного толкования термина инженер, падению социального престижа, стала снижаться государственная поддержка инженерной деятельности. Для сдерживания этих процессов в 1988 году научно-инженерным сообществом была создана новая независимая общественная организация – «Союз научных и инженерных обществ СССР». Однако переход на рыночную экономику нанес мощнейший удар по российскому инженерному корпусу в 1990-е годы. 

Полное отсутствие государственной поддержки, отсутствие перспектив, издевательское отношение общества к профессии «инженер», привело к новой волне эмиграции или «утечке мозгов». В постперестроечные годы страна практически полностью лишилась инженерного сообщества, за рубеж были вывезены многие технологии и разработки, начался кадровый голод. В итоге по техническому развитию в отдельных секторах экономики Россия отстала от своих зарубежных конкурентов на десятилетия [8, с. 91].

Научно-инженерная деятельность стала уделом патриотов и энтузиастов. Общественные организации в этот период фактически не работали – отсутствие финансирования и интереса к инженерной профессии со стороны государства и бизнеса практически парализовали деятельность научно-технических организаций. Их работа, как правило, не выходила за рамки института или научного центра. Впрочем, тот факт, что научно-технические организации сохранились в этот период – уже большое достижение. В итоге к началу нового века российское научно-инженерное сообщество было разрознено, фактически не имело общего центра, деятельность сообщества никак не координировалась. 

В 2000-х годах руководство страны попыталось запустить обратный процесс. Небольшую государственную поддержку начали получать отдельные технологические проекты. Необходимость модернизации производств заставляет крупный бизнес вкладывать в новые разработки. В результате в последние годы инженерное сообщество в России несколько оживилось. Инженеры стали объединятся в профильные союзы, которые пытаются защищать интересы своих членов на государственном уровне. Однако проблема разрозненности научно-инженерного сообщества сохраняется до сих пор – единого центра у инженеров по-прежнему нет.

В результате эффективность узкопрофильных инженерных союзов и обществ пока невелика. Хотя сейчас и возрождаются научно-инженерные общества – «Русское техническое сообщество», «Вольное экономическое общество» и другие, ранее влиятельные союзы, на сегодняшний день они имеют мало влияния на развитие всего научно-инженерного сообщества. Мы считаем, что сегодня необходим новый современный мощный и эффективный механизм развития научно-инженерного сообщества. Новое общество должно объединить всех без исключения инженеров, естествоиспытателей, конструкторов, ученых, технических специалистов. Новая организация должна обеспечить связь внутри сообщества, сформулировать единые цели и задачи, выбрать приоритетные направления развития научно-инженерного общества. Новый союз должен обеспечить связь сообщества с государством и бизнесом. Центром объединения и восстановления российского инженерного общества может стать Российский союз инженеров.

 

2. Этапы компьютеризации инженерной деятельности ХХ в.

Инженерная деятельность в современных условиях тесно связана с использованием персональных электронных вычислительных машин (ПЭВМ) и микропроцессоров. В последние годы в инженерной практике вычислительная техника широко применяется для выполнения расчетов, автоматизации проектирования, организации и планирования экспериментальных исследований, для обработки результатов испытания машин, механизмов, аппаратов и для многих других целей. В настоящее время инженеры любой специальности должны приобрести в вузе умения и навыки решения производственных и научных задач с помощью ЭВМ. С этой целью в учебные планы всех инженерных специальностей введены дисциплины, обеспечивающие углубленное изучение математики, программирования, вычислительной техники, новых информационных технологий.

Сейчас обучение в технических вузах поставлено таким образом, что студенты с первого курса пользуются персональными электронными вычислительными машинами. Если раньше своего рода символом инженерного труда была логарифмическая линейка, то теперь все большее и большее количество студентов имеют в своем личном пользовании ПЭВМ.

Термин САПР "Система автоматического проектирования" (в английской нотации CAD) появился в конце пятидесятых годов, когда Д.Т.Росс начал работать над одноименным проектом в Массачусетском Технологическом Институте (MIT). Первые CAD - системы появились десять лет спустя [1, с. 14].

За последние 25 лет CAD - системы, как системы геометрического моделирования, были значительно усовершенствованы: появились средства 3D- поверхностного и твердотельного моделирования, параметрического конструирования, был улучшен интерфейс.

Несмотря на все эти усовершенствования, касающиеся, в основном, геометрических функций, CAD - системы оказывают конструктору слабую помощь с точки зрения ВСЕГО процесса конструкторского проектирования.

Они обеспечивают описание геометрических форм и рутинные операции, такие как образмеривание, генерация спецификаций и т.п. Эти ограничения и чисто геометрический интерфейс оставляет методологию конструкторской работы такой же, какой она была при использовании чертежной доски. Развитие получили также системы автоматизации проектирования технологических процессов (CAPP) и программирования изготовления деталей на станках с ЧПУ (CAM). Однако, подобно CAD - системам, эти усовершенствования не затронули ПРОЦЕСС проектирования: CAPP - системы могут генерировать технологические процессы, но только при условии предварительного специального описания изделия с помощью конструкторско - технологических элементов. CAM -системой может быть использована геометрическая модель CAD - системы, но все функции CAPP - системы (проектирование технологии обработки)- перекладываются на инженера .

Помимо проектирования, инженерная деятельность связана с инженерным бизнесом и менеджментом. Сюда, в частности, входят автоматизированные системы управления производством (АСУПр). Эти системы обычно развиваются без какой - либо интеграции с САПР.

Итак, до последнего времени концепция автоматизации труда конструктора базировалась на принципах геометрического моделирования и компьютерной графики. При этом, системы компьютеризации труда конструкторов, технологов, технологов - программистов, инженеров - менеджеров и производственных мастеров развивались автономно и Инженерные Знания - основа проектирования, оставались вне компьютера. Такое положение не удовлетворяет современным требованиям к автоматизации. Сейчас необходима комплексная компьютеризация инженерной деятельности на всех этапах жизненного цикла изделий, которая получила название CALS (Computer Aided Life-cycle System) технологии. Традиционные САПР с их геометрическим, а не информационным ядром, не могут явиться основой для создания таких систем. Сегодня каждое изделие в процессе своего жизненного цикла должно представляться в компьютерной среде в виде иерархии информационных моделей, составляющих единое целое и имеющих соподчиненность .

В промышленном производстве давно царит жесткая конкуренция. Чтобы выжить в этих нелегких условиях предприятиям приходится как можно быстрее выпускать новые изделия, снижать их себестоимость и повышать качество. В этом им помогают современные системы автоматизированого проектирования (САПР), позволяющие облегчить весь цикл разработки изделий - от выработки концепции до создания опытного образца и запуска его в производство. Тем самым значительно ускоряется процесс создания новой продукции без ущерба качеству. Поэтому сейчас без САПР не обходится ни одно конструкторское или промышленное предприятие. И хотя на долю указанных систем приходится лишь около 3% рынка ПО, они играют очень важную роль, поскольку помогают создавать товары, без которых невозможно представить нашу повседневную жизнь: автомобили, самолеты, бытовые приборы, промышленное оборудование и, следовательно, являются одной из движущих сил современной промышленности и мировой экономики. Термин «САПР для машиностроения» в нашей стране обычно используют в тех случаях, когда речь идет о пакетах программ для автоматизированного проектирования (CAD), подготовки производства (CAM) и инженерного анализа (CAE).

Существуют САПР и для других областей — разработки электронных приборов, строительного проектирования. Идея автоматизировать проектирование зародилась в конце 50-х годов прошлого века, почти одновременно с появлением коммерческих компьютеров. А уже в начале 60-х ее воплотила компания General Motors в виде первой интерактивной графической системы подготовки производства. В 1971 г. создатель этой системы доктор Патрик Хэнретти (Patrick Hanratty) основал компанию Manufacturing and Consulting Services (MCS) и разработал методики, которые составили основу большинства современных САПР. Вскоре появились и другие CAD-пакеты. В то время они работали на мэйнфреймах и мини-компьютерах и стоили очень дорого — в среднем 90 тыс. долл. за одно рабочее место. Очевидно, что лишь крупные предприятия могли позволить себе идти в ногу со временем. Одновременно стали появляться и первые CAM-программы, позволяющие частично автоматизировать процесс производства с помощью программ для станков с ЧПУ, и CAE-продукты, предназначенные для анализа сложных конструкций. Так в 1971 г. компания MSC.Software выпустила систему структурного анализа MSC.Nastran, которая до сих пор занимает ведущее положение на рынке CAE. К середине 80-х годов системы САПР для машиностроения обрели форму, которая существует и сейчас. Но впереди их ждало много любопытных перемен.

Появление микропроцессоров положило начало революционным преобразованиям в области аппаратного обеспечения - наступила эра персональных компьютеров. Но для трехмерного моделирования мощности первых ПК не хватало. Поэтому в 80-е годы поставщики «серьезных» средств автоматизации проектирования ориентировались на компьютеры на базе RISC-процессоров, работавшие под управлением ОС Unix, - они были намного дешевле мэйнфреймов и мини-машин. Параллельно снижалась стоимость ПО, и к началу 90-х средняя цена рабочего места снизилась до 20 тыс. долл. - САПР становились доступнее. Но в массовый продукт они превратились лишь тогда, когда компания Autodesk разработала свой знаменитый пакет AutoCAD стоимостью всего 1 тыс. долл. Правда, в те времена ПК были 16-разрядными, и их мощности хватало лишь для двумерных построений - черчения и создания эскизов. Однако это не помешало новинке иметь огромный успех у пользователей. . Наиболее бурное развитие САПР происходило в 90-х годах, когда Intel выпустила процессор Pentium Pro, а Microsoft - систему Windows NT. Тогда на поле вышли новые игроки «средней весовой категории», которые заполнили нишу между дорогими продуктами, обладающими множеством функций, и программами типа AutoCAD. В результате сложилось существующее и поныне деление САПР на три класса: тяжелый, средний и легкий. Такая классификация возникла исторически, и хотя уже давно идут разговоры о том, что грани между классами постепенно стираются, они продолжают существовать, так как системы по-прежнему различаются и по цене, и по функциональным возможностям. Следует добавить, что кроме универсальных САПР также выпускаются и различные специализированные продукты, например, для инженерного анализа, расчета трубопроводов, анализа литья металлов, проектирования металлоконструкций и множества других конкретных задач [15, с. 189].

Информация о работе Развитие инженерной деятельности в России