Применение пределов в экономике

Автор работы: Пользователь скрыл имя, 01 Декабря 2015 в 11:12, реферат

Описание работы

В практических расчетах в основном применяют дискретные проценты, т.е. проценты, начисляемые за фиксированные одинаковые интервалы времени (год, полугодие, квартал и т. д.). Время - дискретная переменная. В некоторых случаях - в доказательствах и расчетах, связанных с непрерывными процессами, возникает необходимость в применении непрерывных процентов.

Файлы: 1 файл

Реферат.docx

— 95.95 Кб (Скачать файл)

НЕГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

 

«СИБИРСКИЙ ИНСТИТУТ БИЗНЕСА И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ»

 

 

 

 

Текущий контроль

(реферат)

 

 

 

Дисциплина           Математический анализ

 

Тема: Применение пределов в экономике

 

 

 

 

Выполнил(а) Гринько Наталья Владимировна________________________

Группа: ЭН-114(2)____________________

Адрес: НСО, Татарский р-н, с. Козловка, ул. Грязнова, 31______________________

Проверил: Сорока Елена Георгиевна___

Оценка:_____________________________

Дата:_______________________________


 

 

 

2015 г

Содержание

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Сложные проценты

 

В практических расчетах в основном применяют дискретные проценты, т.е. проценты, начисляемые за фиксированные одинаковые интервалы времени (год, полугодие, квартал и т. д.). Время - дискретная переменная. В некоторых случаях - в доказательствах и расчетах, связанных с непрерывными процессами, возникает необходимость в применении непрерывных процентов. Рассмотрим формулу сложных процентов:

S = P(1 + i)n.                                                  

Здесь P - первоначальная сумма, i - ставка процентов (в виде десятичной дроби), S - сумма, образовавшаяся к концу срока ссуды в конце n-го года. Рост по сложным процентам представляет собой процесс, развивающийся по геометрической прогрессии. Присоединение начисленных процентов к сумме, которая служила базой для их определения, часто называют капитализацией процентов. В финансовой практике часто сталкиваются с задачей, обратной определению наращенной суммы: по заданной сумме S, которую следует уплатить через некоторое время n, необходимо определить сумму полученной ссуды P. В этом случае говорят, что сумма S дисконтируется, а проценты в видеразности S - P называются дисконтом. Величину P, найденную дисконтированием S, называют современной, или приведенной, величиной S. Имеем:

P =  ;     P =   = 0.

Таким образом, при очень больших сроках платежа современная величина последнего будет крайне незначительна. В практических финансово-кредитных операциях непрерывные процессы наращения денежных сумм, т. е. наращения за бесконечно малые промежутки времени, применяются редко. Существенно большее значение непрерывное наращение имеет в количественном финансово-экономическом анализе сложных производственных и хозяйственных объектов и явлений, например, при выборе и обосновании инвестиционных решений. Необходимость в применении непрерывных наращений (или непрерывных процентов)определяется прежде всего тем, что многие экономические явления по своей природе непрерывны, поэтому аналитическое описание в виде непрерывных процессов более адекватно, чем на основе дискретных. Обобщим формулу сложных процентов для случая, когда проценты начисляются m раз в году:

S =P (1 + i/m) mn.

Наращенная сумма при дискретных процессах находится по этой формуле, здесь m - число периодов начисления в году, i - годовая или номинальная ставка. Чем больше m, тем меньше промежутки времени между моментами начисления процентов. В пределе при m → ∞имеем:

S =   P (1 + i/m) mn = P  ((1 + i/m) m) n.

Поскольку  (1 + i/m) m = e i, то `S = P e in.

При непрерывном наращении процентов применяют особый вид процентной ставки - силу роста, которая характеризует относительный прирост наращенной суммы в бесконечно малом промежутке времени. При непрерывной капитализации процентов наращенная сумма равна конечной величине, зависящей от первоначальной суммы, срока наращения и номинальной ставки процентов. Для того, чтобы отличить ставки непрерывных процентов от ставки дискретных процентов, обозначим первую через d, тогда S = Pe .

Сила роста d представляет собой номинальную ставку процентов при m→ ∞. Множитель наращения рассчитывается с помощью ЭВМ или по таблицам функции.

 

 

 

 

  1. Потоки платежей. Финансовая рента

 

Контракты, сделки, коммерческие и производственно-хозяйственные операции часто предусматривают не отдельные разовые платежи, а множество распределенных во времени выплат и поступлений. Отдельные элементы такого ряда, а иногда и сам ряд платежей в целом, называется потоком платежей. Члены потока платежей могут быть как положительными (поступления), так и отрицательными (выплаты) величинами. Поток платежей, все члены которого положительные величины, а временные интервалы между двумя последовательными платежами постоянны, называют финансовой рентой. Ренты делятся на годовые и р-срочные, где р характеризует число выплат на протяжении года. Это дискретные ренты. В финансово-экономической практике встречаются и с последовательностями платежей, которые производятся так часто, что практически их можно рассматривать как непрерывные. Такие платежи описываются непрерывными рентами.

Пример 1. Пусть в конце каждого года в течение четырех лет в банк вносится по 1 млн. рублей, проценты начисляются в конце года, ставка - 5% годовых. В этом случае первый взнос обратится к концу срока ренты в величину 10 6 ´ 1,053 так как соответствующая сумма была на счете в течение 3 лет, второй взнос увеличится до 10 6 ´ 1,052, так как был на счете 2 года. Последний взнос процентов не приносит. Таким образом, в конце срока ренты взносы с начисленными на них процентами представляют ряд чисел: 10 6 ´ 1,053; 106 ´ 1,052; 10 6 ´ 1,05; 10 6. Наращенная к концу срока ренты величина будет равна сумме членов этого ряда. Обобщим сказанное, выведем соответствующую формулу для наращенной суммы годовой ренты. Обозначим: S - наращенная сумма ренты, R - размер члена ренты, 
i - ставка процентов (десятичная дробь), n - срок ренты (число лет). Члены ренты будут приносить проценты в течение n - 1, n - 2,..., 2, 1 и 0 лет, а наращенная величина членов ренты составит

R (1 + i)n - 1, R (1 + i)n - 2,..., R (1 + i), R.

Перепишем этот ряд в обратном порядке. Он представляет собой геометрическую прогрессию со знаменателем (1+i) и первым членом R. Найдем сумму членов прогрессии. Получим: S = R´((1 + i)n - 1)/((1 + i) - 1) = R´((1 + i)n - 1)/ i. Обозначим S n; i = ((1 + i)n - 1)/ i и будем называть его коэффициентом наращения ренты. Если же проценты начисляются m раз в году, то S = R´((1 + i/m)mn - 1)/((1 + i/m) m - 1), где i - номинальная ставка процентов.

Величина a n; i = (1 - (1 + i) - n)/ i называется коэффициентом приведения ренты. Коэффициент приведения ренты при n → ∞показывает, во сколько раз современная величина ренты больше ее члена:

 a n; i =   (1 - (1 + i) - n)/ i =1/i.

Пример 2. Под вечной рентой понимается последовательность платежей, число членов которой не ограничено - она выплачивается в течение бесконечного числа лет. Вечная рента не является чистой абстракцией - на практике это некоторые виды облигационных займов, оценка способности пенсионных фондов отвечать по своим обязательствам. Исходя из сущности вечной ренты можно полагать, что ее наращенная сумма равна бесконечно большой величине, что легко доказать по формуле: 
R×´((1 + i)n - 1)/ i → ∞ при n → ∞.

Коэффициент приведения для вечной ренты a n; i → 1/i, откуда A = R/i, т. е. современная величина зависит только от величины члена ренты и принятой ставки процентов.

 

  1.  Многочлен Тейлора. Формула Тейлора с остаточным членом Rn.

 

Пусть f (n-1) - раз дифференцируема в окрестности U= (x0-a,x0+a) точки x0 и существует f (n) (x0). Многочленом Тейлора в точке x0 называется многочлен вида

 

.

 

Свойства многочлена Тейлора

 

(1)

 

Из (1) следует

 

= (2)

 

Из (1) следует

 

Pn (x0) =f (x0), (3)

 

В частности,

 

, k=0,1,…,n.

 

Обозначим Rn (x) =f (x) - Pn (x), тогда

 

(4)

 

(4) - формула Тейлора функции f в окрестности точки x0 с остаточным членом Rn. Основная задача будет состоять в представлении остатка в удобной для оценок формах.

 

  1.  Другие формы остатка в формуле Тейлора

Пусть функция f (x) (n+1) -раз дифференцируема в окрестности Ua (x0) = (x0-a,x0+a) и y (x) дифференцируема в , y¢¹0 в , y (x) непрерывна в .

Возьмем xÎ (x0-a,x0+a), x¹x0 и фиксируем. Для определенности будем считать x0<x и рассмотрим на [x0,x] функцию

.

Отметим следующие свойства этой функции

j (x) =0

j (x0) =Rn (x)

j (z) непрерывна на [x0,x], дифференцируема на (x0,x).

Не очевидным является только четвертое свойство

= = = .

К функциям j и y применим теорему Коши о конечных приращениях на отрезке [x0,x]

. Откуда  и, далее,

(1)

Следствие 1. Если функция f (n+1) - раз дифференцируема на (x0-a, x0+a), то

,

где xÎ (x0,x) (или (x,x0)),p>0. Остаток Шлемильха-Роша.

Для доказательства этой формулы следует в качестве функции y (z) взять

y (z) = (x-z) p.

Следствие 2. (Формула Тейлора с остатком в форме Лагранжа) Если f (n+1) -раз дифференцируема на (x0-a, x0+a), то

.

Получено из общей формулы при p=n+1.

Замечание. Формулу с остатком Лагранжа можно представить в виде.

.

Следствие 3. Если f (n+1) -раз дифференцируема на (x0-a, x0+a), то справедлива формула Тейлора с остатком в форме Коши

Получено из общей формулы при p=1.

На финансовом рынке кредитор получает доход от предоставления денег в долг в виде, например, помещения денег на сберегательный счет, покупки акций, выдачи ссуды и т.д. Получаемый доход называется процентами и определяется кредитной ставкой.

Различают два вида процентных ставок: простые и сложные. Начисления при ставке простого процента предполагает применение ставки только к первоначальной сумме на протяжении всего срока долга. Пусть - наращенная сумма долга через периодов после предоставления ссуды в размере денежных единиц, а простая ставка процента за период равна i процентов. Тогда в каждом периоде процентные начисления постоянны и равны . Найдем наращенную сумму долга в каждом из периодов:

Данная формула, n = 0,1,...,

называется формулой простых процентов, - множителем наращения.

Рассмотрим теперь, как изменяется сумма долга при начислении сложного процента. В этом случае доход определяется применением процентной ставки к первоначальной сумме вместе с начисленными в предыдущих периодах процентами.

 

 

Пример 22.

Пусть ссуда в 2000 рублей предоставляется на пять лет при простой ставке 3% годовых. Тогда наращенная сумма через пять лет составит

S5 = 2000(1+5· 0,03) = 2300,

При той же ставке сложных процентов сумма через пять лет составит:

S5 = 2000(1+0,03)5 = 2319,

Очевидно, что сумма растет быстрее при сложной ставке процента, при этом рост будет выше при большей ставке процента.

Отметим, что формулы типа (1) используются в демографических расчетах (прирост народонаселения) и в экономических прогнозах (увеличение валового национального продукта).

Если предположить, что вклады вносятся каждый период, то по формуле (1) легко подсчитать общую сумму дохода.

Аналогично, при ежеквартальном размещении депозит в конце года будет равен

Если ежемесячно повторять ту же операцию, то при ежечасной операции

Заметим, что последовательность значений увеличения первоначального вклада совпадает с последовательностью , предел которой равен .

В общем случае, если i -процент начисления и год разбит на n частей, то через t лет сумма депозита будет равна:

Введем новую переменную , при n® ¥ получим m ® ¥.

Пусть темп инфляции составляет 1% в день. Насколько уменьшится первоначальная сумма через полгода?

(Инфляция - процесс уменьшения стоимости денег, в результате которого на одинаковую сумму денег через некоторое время можно купить меньший объём товаров и услуг).

 

Заключение

В данной работе были рассмотрены методы вычисления пределов использующие понятие производной, а именно: правило Лопиталя и формула Тейлора.

Для каждого метода рассмотрены примеры вычисления пределов. Так же было рассмотрено такое важное понятие, как скорость роста функции, играющее большую роль при вычислении пределов.

Список использованных источников

 

  1. Дадаян А.А., Математический анализ: учебное пособие / Дадаян А.А., Дударенко В.А., - Минск, Вышэйшая школа, 1990. - 428с.
  2. Марон И.А., Дифференциальное и интегральное исчисление в примерах и задачах (функции одной переменной) / Марон И.А., - М., Наука, 1970. - 400с.
  3. 1.Бачурин В. А., Бачурин Ф. В. Сборник задач по математике. - М., 2003.
  4. 2.Берман Г. Н. Сборник задач по курсу математического анализа. - М., 1985.
  5. .Бермант И. Г. Краткий курс математического анализа. - М., «Наука», 1985.
  6. .Бохан К. А., Егорова И. А., Лащенко К. В. Курс математического анализа. - М., 1966.
  7. .Виленкин Н. Я., Куницкая Е.С. Математический анализ. Введение в анализ. - М., «Просвещение», 1973.
  8. .Виленкин Н. Я., Задачник по курсу математического анализа. - М., «Просвещение», 1971, ч. 1.
  9. .Воднев В. Т., Наумович А. Ф. Основные математические формулы. - Минск, 1988.
  10. .Выгодский М. Я. Справочник по высшей математике. - М., 2001.
  11. .Гуревич Г. А. Бесповторные последовательности. - Квант, 1975, №9.
  12. .Глейзер Г. Н. История математики в школе 7-9 класс. - М., 1982
  13. .Глейзер Г. Н. История математики в школе 10-11 класс. - М., 1982
  14. .Гребенча М. К., Новоселов С. И. Курс математического анализа. - М., 1960, т. 1.

 

 


Информация о работе Применение пределов в экономике