Основные сведения о микропроцессорах

Автор работы: Пользователь скрыл имя, 17 Октября 2012 в 01:28, реферат

Описание работы

Цель данного реферата – описать эволюцию микропроцессоров и их развитие от центров контроллеров простых устройств, таких, как светофоры или станки с Числовыми Программными Управлениями, до центров персональных компьютеров; описание архитектуры и свойств некоторых звеньев в цепочке эволюции микропроцессоров. В реферате четыре раздела – Центральные процессоры, Другие микропроцессоры, Вспомогательные микросхемы, Советские разработки. Первый из них посвящён эволюции и характеристикам центральных процессоров, как наиболее практически важного типа микропроцессоров. Второй раздел описывает другие микропроцессоры – сопроцессоры, независимые процессоры и т.п

Содержание работы

Введение. Основные сведения о микропроцессорах………..2
Центральные процессоры……………………………………..3
Другие микропроцессоры: сопроцессоры…………………….8
Вспомогательные микросхемы………………………………...10
Советские разработки…………………………………………..12
Советские разработки: первые МПК…………………………..13
Вывод…………………………………………………………….15
Список используемой литературы……………………………...16

Файлы: 1 файл

реферат по информатике.doc

— 251.00 Кб (Скачать файл)

 

Содержание:

Введение. Основные сведения о микропроцессорах………..2

Центральные процессоры……………………………………..3

Другие микропроцессоры: сопроцессоры…………………….8

Вспомогательные микросхемы………………………………...10

Советские разработки…………………………………………..12

Советские разработки: первые МПК…………………………..13

Вывод…………………………………………………………….15

Список используемой литературы……………………………...16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение.

  Цель данного реферата – описать эволюцию микропроцессоров и их развитие от центров контроллеров простых устройств, таких, как светофоры или станки с Числовыми Программными Управлениями, до центров персональных компьютеров; описание архитектуры и свойств некоторых звеньев в цепочке эволюции микропроцессоров. В реферате четыре раздела – Центральные процессоры, Другие микропроцессоры, Вспомогательные микросхемы, Советские разработки. Первый из них посвящён эволюции и характеристикам центральных процессоров, как наиболее практически важного типа микропроцессоров. Второй раздел описывает другие микропроцессоры – сопроцессоры, независимые процессоры и т.п. Цель третьего раздела – создание общего представления о небезграничности возможностей микропроцессоров и о приложениях, выполняемых вместо них другими устройствами, такими как контроллеры прерываний. И наконец, в четвёртом разделе представлены наши отечественные достижения, прежде всего, в области копирования зарубежных образцов микроэлектронной техники. Первый подраздел реферата – Общие сведения о микропроцессорах – не входит ни в один из перечисленных разделов; он рассказывает об истории микроэлектроники в целом.

Основные  сведения о микропроцессорах.

     Начало 70-х годов ознаменовалось рождением нового и, как оказалось, весьма перспективного и беспрецедентного по своим последствиям направления в развитии вычислительной техники – в 1971 г. был выпущен первый в мире микропроцессор. С тех пор за короткое время появилось несколько поколений микропроцессоров, а для прогнозирования перспектив их будущих применений не хватает даже самой богатой фантазии. Совершенствование микропроцессоров идёт параллельно с развитием микроэлектронной технологии, которая позволяет размещать на кристалле всё больше и больше логических схем.

   Микропроцессоры, а в более общем плане – большие и сверхбольшие интегральные схемы, революционизировали вычислительную технику в том отношении, что она становится всё более дешёвой, массовой и надёжной, а её применение оказывается экономически эффективным практически во всех областях народного хозяйства. По существу, микропроцессорная техника является фундаментом грандиозной программы компьютеризации общества.

    История развития однокристальных микропроцессоров в 1970-х – 1990-х годах показывает их эволюцию от первого 4-битного микропроцессора Intel 4004 через 8- и 16-битные устройства к более новым 32-битным процессорам, функциональные возможности которых превосходят возможности процессоров крупных компьютеров прошлого. И хотя первые микропроцессоры подходили только для калькуляторов и простых контроллеров, современные микропроцессоры используются в качестве ЦП сложных компьютеров широкого назначения.

По степени  интеграции микропроцессорных приборов традиционно различают:

  • малую– менее 10 логических вентилей;
  • среднюю – от 10 до 100 вентилей;
  • большую– от 100 до нескольких тысяч вентилей;
  • сверхбольшую– десятки тысяч вентилей;

Все современные  микросхемы имеют сверхбольшую степень  интеграции (на самом деле, они содержат десятки миллионов логических вентилей).  

  Микропроцессоры фирмы Intel в значительной степени определяют направление развития компьютерной техники. Каждые несколько лет фирма Intel демонстрирует новые прорывы в своей технологии, существенно меняя наши представления о возможностях компьютеризации. Базовое семейство микропроцессоров Intel началось с первого в мире 4-битного микропроцессора 4004 (1971), ориентированного на применение в микрокалькуляторах. Затем фирма Intel выпустила 8-битные микропроцессоры 8008 (1972), 8080 (1974) и 8085 (1976), достаточно мощные для построения небольшого компьютера. Они могли выполнять двоичные и двоично-десятичные 16-битные арифметические операции и адресовать память до 64 Кбайт с помощью 16-битной шины данных. Наконец, был выпущен 16-битный микропроцессор 8086 (1978) с его 8-битным вариантом 8088 (1979) и расширенными вариантами 80186 и 80286 (1982), обладающими более высоким быстродействием и дополнительными возможностями. Процессоры 8086, 8088 и 80186 могли оперировать с 32-битными двоичными и 16-битными двоично-десятичными числами и адресовать память до 1 Мбайт блоками по 64 Кбайт. Новое поколение микропроцессоров ознаменовалось появлением 32-битных процессоров 80386 (1985) и 486SX (1989), которые могли адресовать до 4 Гбайт памяти и выполнять несколько задач одновременно. За 18 лет производительность микропроцессоров фирмы Intel выросло от 60 тыс. до 41 м  лн операций в секунду. Процессор 486DX имел дополнительно встроенные кэш-память первого уровня и устройство обработки чисел с плавающей точкой, а следующие процессоры фирмы Intel – 64-разрядную шину данных, возможность обработки нескольких инструкций одновременно и набор дополнительных регистров и инструкций. Таковы процессоры Pentium, Pentium MMX, Pentium Pro и Pentium II. Последние два из них также содержат в одном корпусе с процессором встроенную кэш-память второго уровня.

      Но фирма Intel не является монополистом в области разработки микропроцессоров. Группа инженеров, отделившихся от фирмы Intel и образовавших фирму Zilog, выпустило 8-битный микропроцессор Z80 (1976), аналогичный Intel 8080, но содержащий дополнительные регистры и команды. Большинство программ процессора 8080 могут выполняться и на процессоре Z80. Аналогичные 8-битные микропроцессоры были выпущены и другими фирмами: процессор 6800 – фирмой Motorola, процессор 6502 – фирмой MOS Technology. Ещё позже фирма Motorola выпустила микропроцессор 68000 (1980), который имеет 16-битную шину данных, но может обрабатывать 32-битные данные и адресовать память до 4 Гбайт. Он выполнял около 800 тыс. операций в секунду. Его преемниками стали микропроцессоры 68010, 68020 и 68030, длительное время составлявшие основную конкуренцию микропроцессорам фирмы Intel.

 Другой группой конкурентов фирмы Intel являются фирмы, выпускающие микропроцессоры, совместимые с процессорами фирмы Intel. Таковы фирмы AMD, Cyrix, NexGen, Centaur Technology. Большинство из этих фирм сначала выпускало копии микропроцессоров 80386 по лицензии фирмы Intel, а затем лицензия была отозвана, и таким фирмам пришлось самостоятельно разрабатывать свои следующие микропроцессоры.

Центральные процессоры.

Функция одного из важнейших видов  микропроцессоров – центрального процессора (ЦПУ, центрального процессорного устройства) – состоит в дешифрации команд и управлении всеми действиями в системе; он же выполняет все арифметические и логические операции. Хотя и имеется множество разновидностей архитектуры ЦП, мы рассмотрим общие принципы работы и основные узлы микропроцессоров.

   Для работы ЦП нужны некоторые вспомогательные схемы, которые могут быть встроены в микросхему ЦП или размещаться в собственных корпусах. Так, генератор синхронизации формирует одну или несколько последовательностей равномерно расположенных импульсов, которые необходимы для синхронизации действий в микропроцессоре и логике управления шиной. Выходные импульсы генератора имеют одну и ту же частоту, но смещены во времени, т. е. имеют различные фазы. В микропроцессорных системах применяются одно- – четырехфазные сигналы синхронизации, причем многофазные сигналы требовались только в первых микропроцессорах. В большинстве современных микропроцессоров схема синхронизации, за исключением осциллятора (кварца), размещается на кристалле самого микропроцессора.

   Память предназначена для  хранения данных и команд, которые  выполняет ЦП. Обычно она состоит  из набора модулей, каждый из  которых содержит тысячи ячеек.  Каждая ячейка хранит часть или все данное или команду и с ней ассоциируется идентификатор, называемый адресом памяти (или просто адресом). Центральный процессор последовательно вводит (или выбирает) команды из памяти и выполняет определяемые ими задачи.

   Подсистема ввода-вывода состоит из разнообразных устройств, предназначенных для взаимодействия с «внешним миром» и хранения больших объемов информации. Примерами устройств ввода 1980-х годов служат карточные считыватели, фотосчитывающие ленточные устройства, аналого-цифровые преобразователи, а устройств вывода – строчные принтеры, графопостроители, карточные и ленточные перфораторы и цифро-аналоговые преобразователи. Некоторые устройства, например терминалы (совокупность монитора и клавиатуры), обладают возможностями и ввода, и вывода. В настоящее время появилось много новых видов устройств ввода и вывода. Компоненты компьютера, осуществляющие постоянное хранение программ и данных, называются внешней (массовой) памятью. Наиболее распространены в начале 1980-х годов были ленточные и дисковые накопители, но затем завоевали популярность устройства на цилиндрических магнитных доменах (ЦМД-память) и приборах с зарядовой связью (ПЗС-память). К середине 1990-х годов, однако, из магнитных устройств внешней памяти остались в использовании только накопители на гибких магнитных дисках (НГМД, или дискеты) и накопители на жёстких магнитных дисках (НЖМД, или винчестерские диски); также появился принципиально новый вид внешней памяти, а именно память на компакт-дисках. В настоящее время именно три последних вида внешней памяти пользуются наибольшей популярностью.

  Для выполнения программы  центральным процессором её необходимо  передать из внешней памяти  в основную.

   ЦП соединяется с памятью  и устройствами ввода-вывода совокупностью  проводников, образующих системную шину. По этим проводникам, оформленным в виде кабеля или соединений на печатной плате, передается любая информация. Обычно проводники шины объединяются в три группы:

  • линии данных для передачи информации;
  • линии адреса, показывающие, откуда или куда передается информация;
  • линии управления, регулирующие действия на шине.

  Сигналы на шине должны  быть скоординированы с сигналами,  генерируемыми подключенными к  шине разнообразными компонентами. Схемы для подключения шины  к устройству называются интерфейсом, а логика управления шиной образует интерфейс ЦП. Проектирование интерфейсов и логики управления шиной упрощают разнообразные интерфейсные микросхемы. В зависимости от сложности системы логика управления шиной частично или полностью размещается на кристалле ЦП.

   Интерфейсы памяти в основном  образуют схемы для дешифрирования  адреса целевой ячейки и буферирования  данных на (с) шину(ы), а также  схемы выполнения операций считывания  и записи. Интерфейсы ввода-вывода  варьируются от очень простых до очень сложных. Все они должны буферировать данные на (с) системную(ой) шину(ы), принимать приказы от ЦП и передавать в ЦП информацию о состоянии подключенного устройства. Кроме того, интерфейсы внешней памяти должны взаимодействовать непосредственно с памятью, а для этого требуется управление системной шиной. Взаимодействие между интерфейсом ввода-вывода и шиной данных осуществляется через регистры, называемые портами ввода-вывода.

  Конечно, все ячейки памяти  и регистры ввода-вывода состоят  из бит, но так как отдельные биты содержат очень мало информации, они группируются в байты – наименьшие единицы информации, независимо обрабатываемые микропроцессором, и слова – наибольшие такие единицы. Размер байта и слова определяется архитектурой микропроцессора. Поскольку символы обычно имеют длину 7 или 8 бит и поскольку компьютеры более легко работают со степенями 2, байты почти всегда состоят из 8 бит. Слова же состоят из 2, 3 или 4 байт в зависимости от компьютера и структуры его системной шины. Так как 16-битные однокристальные микропроцессоры имеют в своих системных шинах 16 линий данных, в них термин «слово» обозначает 2 байта (16 бит). На самом деле, в фирменных руководствах по 32-битным микропроцессорам, таким как Intel 80386, также говорится о словах как о двойных байтах. Это обеспечивает программную совместимость более поздних микропроцессоров с более ранними 16-битными.

  С каждым байтом памяти  ассоциируется идентифицирующий  его адрес и при обращении  к байту его адрес передается  в соответствующий интерфейс по линиям адреса. Множество всех возможных адресов в данной ситуации называется адресным пространством. В некоторых компьютерах имеется два адресных пространства, а в других для обращения ко всем ячейкам памяти и регистрам ввода-вывода используется единое адресное пространство. При наличии отдельных адресных пространств памяти и ввода-вывода для указания нужного адресного пространства вместе с линиями адреса необходимо использовать некоторые линии управления. Так как память обычно разделена на модули, несколько старших бит адреса памяти применяют для выбора модуля, а остальные (младшие) биты идентифицируют байт (или слово) в модуле. Аналогично интерфейс идентифицируется старшими битами адреса ввода-вывода, а регистр в интерфейсе выбирается двумя или тремя младшими битами.

   Допустимое число бит  адреса определяет размер адресного  пространства. Если адрес содержит n бит, получается 2n возможных адресов от 0 до 2n - 1. Число линий адреса в системной шине диктует размер пространства памяти (или, возможно, объединенного пространства памяти и ввода-вывода). При наличии n линий адреса максимальная емкость памяти (или памяти и ввода-вывода) составляет 2n байт. Двадцать линий адреса микропроцессора 8086 обеспечивают емкость до 220 = (210)2 ≈ (103)2 = 1 млн байт.

   Когда слово состоит из  двух байт, возникает вопрос, адрес  какого байта использовать для  идентификации слова. Кроме того, иногда требуется указывать конкретный  бит в байте или в слове.  Принято считать адресом слова  адрес его младшего байта. Биты  нумеруются с нуля, назначаемого младшему биту. В байте старший бит имеет номер 7, а в слове – номер 15. В памяти младший байт слова располагается по меньшему адресу.

Информация о работе Основные сведения о микропроцессорах