Автор работы: Пользователь скрыл имя, 06 Февраля 2011 в 17:04, статья
Выбор методов формализации исходной информации зависит главным образом от типа неопределенности, к которому относится данная задача. Существует несколько вариантов подходов к классификации типов неопределенности. Нет также единства в терминологии. Тем не менее можно выделить наиболее общие закономерности:
1.Полная определенность (Детерминированная информация. Для принятия решения используются методы линейного программирования с учетом погрешности исходных данных).
2.Пробабилистическая неопределенность (Информация носит вероятностный характер. Задается поведением самого объекта исследования, причем известны вероятности наступления каждого исхода. Устраняется методами вероятностно-статистических описаний);
3.Эпистомологическая неопределенность (Информация нечеткая, расплывчатая. Задается не только поведением объекта, но и не полностью контролируемой деятельностью познающего субъекта).
В. С. Симанков, А. В. Шопин, П. Ю. Бучацкий
Кубанский государственный технологический университет, Краснодар
Майкопский государственный технологический институт, Майкоп
В статье рассматривается методология решения проблемы управления сложными техническими системами, характеризующимися нечеткой информацией о протекающих процессах. Предлагается применение метода нечеткого управления, основанного на продукционных правилах. Приводится упрощенный пример нечеткого управления автономной фотоветроэнергетической системой (ФВЭС).
При управлении сложными техническими системами как правило приходится сталкиваться с различной степенью неопределенности исходных данных, параметров системы, нечеткостью целей и задач управления.
Причины возникновения неопределенности могут заключаться в стохастической природе влияющих на систему внешних факторов, в особенностях протекающего технологического процесса и в непредсказуемости управляющего воздействия человека.
Выбор методов формализации исходной информации зависит главным образом от типа неопределенности, к которому относится данная задача. Существует несколько вариантов подходов к классификации типов неопределенности. Нет также единства в терминологии. Тем не менее можно выделить наиболее общие закономерности:
В современной научной литературе обращается внимание на необходимость разработки и применения новых методов раскрытия неопределенности при управлении в условиях неполной (нечеткой) информации [5, 6, 9].
Методы управления, основанные на теории нечетких множеств, разработанной американским математиком Л. А. Заде, являются, на наш взгляд, наиболее перспективными для решения данного класса задач.
Качественный процесс решения задачи, свойственный человеку, называют нечетким алгоритмом. Для более содержательного определения нечеткого алгоритма введем понятие нечеткого оператора – это любой оператор, содержащий в своей формулировке по крайней мере одну нечеткую или лингвистическую переменную, нечеткую функцию или нечеткое отношение. Тогда нечеткий алгоритм – это последовательность выполняемых в соответствии с их семантикой нечетких операторов, приводящую к неполностью определенному нечеткому решению [3]. Впервые понятие нечеткого алгоритма было введено в работе [1].
Идея нечеткого управления состоит в реализации нечеткого алгоритма в компьютере с использованием нечеткой логики. Исследования применения нечеткой логики в промышленности начались с нечеткого управления и привели к впечатляющим результатам; более того, благодаря успехам нечеткого управления повысился интерес к нечеткой логике во всем мире. Почти все причины успешного применения нечеткой логики в областях, не связанных с управлением, так или иначе, сводятся к идее нечеткого управления. Метод нечеткого управления может быть полезен для любых приложений.
При традиционном нечетком управлении осуществляется параллельная обработка большого числа правил, а не непрерывное выполнение последовательных предписаний типа нечеткого алгоритма. На практике применение правил сводится к нечетким выводам в нечеткой логике. Составляются несколько правил, результаты отдельных выводов по которым обобщаются, и полученный результат преобразуется в числовое значение (задающую величину) для ввода в оборудование, которое является объектом управления. Возможен также способ нечеткого управления с выбором только одного наиболее подходящего правила. Правила описываются с помощью неопределенных слов и называются правилами нечеткого управления.
Существует три основных способа составления правил нечеткого управления:
В первом случае методом вопросов и ответов в словесном виде извлекаются опыт квалифицированного оператора и знания инженера по управлению, которые затем обобщаются в виде правил нечеткого управления в форме «если … то». Второй способ используется в случаях, когда от экспертов не удается получить правила в словесном выражении. Например, когда оператор запоминает манипуляции в виде движений рук, но представить их на языковом уровне затрудняется. В таком случае ему поручается выполнение операции и из хронометрированных данных воссоздается ситуация. Если действия оператора можно смоделировать в форме «если … то», их можно непосредственно использовать в качестве правил управления. Третий способ эффективен в случаях, когда можно провести эксперимент на реальном оборудовании или на имитационной модели. Правила нечеткого управления в этом случае можно формировать начиная «с нуля», когда еще нет ни одного правила, или в соответствии с изменением среды постепенно улучшать их за счет обучения «на ошибках», посредством анализа результатов управления. В [2] выделяется еще четвертый способ - на основе нечеткой модели оборудования правила нечеткого управления легко выводятся теоретически, исходя из целей управления и модели оборудования.
Отметим
некоторые особенности
Вторая особенность – параллельное управление – заключается в том, что и нечеткие методы управления существенно различаются. Традиционные методы управления – это методы, в которых обобщенное правило управления представляется с помощью одной формулы (целевой функции), в то время как при нечетком управлении используется большое количество частных правил. Каждое правило действует в определенной области информационного пространства, используемого при управлении; для каждой локальной области распределенного информационного пространства целесообразно создавать отдельные правила управления. Кроме того, если имеется много регулируемых величин, для каждой из них можно создать отдельные правила управления. Аналогично, если имеется много целей управления, для каждой цели желательно создавать правила управления. Классическое управление существенно ограничивало теоретически возможные разновидности целей в связи с необходимостью представлять цель обобщенной функцией. При нечетком управлении необходимость в целевых функциях и в решении задач оптимального управления отпадает, поэтому можно успешно справляться со всем многообразием целей и даже со взаимно противоречащими целями.
Третья
особенность нечеткого
Почти все реально работающие прикладные системы, активно использующие промежуточные нечеткие оценки, это в настоящее время либо системы, основанные на правилах, а именно на нечетких продукционных правилах, либо реляционные системы использующие нечеткие отношения. Работу и тех и других систем теоретически можно объяснять с единых позиций использования композиционных правил нечетких выводов, но внешне реальные технические алгоритмы выводов в каждом случае имеют существенные отличия.
Поясним на упрощенном примере управления автономной фотоветроэнергетической системой (ФВЭС), как выполняются нечеткие выводы по правилам. ФВЭС является сложной технической системой (Рис. 1) [7]. Она включает в себя следующие основные функциональные компоненты [8]:
ФЭУ (фотоэнергетическое устройство)
ВЭУ (ветроэнергетическое устройство)
Потребитель (жилой дом)
АБ (аккумуляторная батарея)
Каждый
из этих компонентов обладает рядом
характеристик многие из которых
носят вероятностный характер. Солнечная
и ветровая энергии имеют стохастическую
природу. С учетом инертности системы
представляется целесообразным управление
с прогнозированием уровня приходящей
энергии. В этом случае управление приобретает
ярко выраженный нечеткий (расплывчатый)
характер, что позволяет применить метод
нечеткого управления.
Рис. 1. Автономная
ФВЭС
Пусть
существуют знания эксперта о том, что
необходимо зарядить аккумулятор, если
уровень прогнозируемой солнечной и ветровой
энергий высокий. Это знание можно представить
с помощью нечеткого продукционного правила
типа «если … то» следующим образом:
Если уровень энергии
Здесь
выражение, стоящее после если,
называют антецедентом, предпосылкой,
условием и т.п., а выражение, стоящее после
то, – заключением, операцией и т.п. В
нашем случае важно описать предпосылку
и заключение в виде нечеткого отношения.
Другими словами, в исходное выражение
не попали данные о том, каков уровень
энергии, и на сколько нужно увеличить
заряд аккумулятора. При этом интерпретация
с помощью нечеткого множества, например:
ВЫСОКИЙ = 0,1/3 КВт×ч + 0,3/5
гораздо более
точно отражает мысль эксперта, нежели
строгая интерпретация его
ЗАРЯДИТЬ = 0,1/200 А×ч +
Человек,
проектирующий данную систему, создает
из правил в словесном представлении
типа (1) конкретные функции принадлежности
типа (2), (3). Полученные функции принадлежности
можно запомнить в ЭВМ как базу знаний.
Например, формулы (2) и (3) можно запомнить
как информацию в одномерном массиве,
индексы в котором соответствуют элементам
полного пространства. Без ограничения
общности будем считать, что нечеткие
продукционные правила типа (1) накапливаются
в базе знаний. Пусть также при прогнозировании
текущего уровня энергии обнаружено, что
Уровень энергии
Если
прогноз уровня энергии возможен
с большей точностью, то можно
получить точную информацию. Однако, на
практике при управлении ФВЭС с учетом
изменения облачности информацию с достаточно
хорошей точностью получить не удается.
В подобных случаях удобно принимать за
информацию наблюдение (4), представленное
с помощью нечеткого множества следующим
образом:
Довольно ВЫСОКИЙ = 0,5/5
Разумеется,
предпосылка ВЫСОКИЙ и наблюдение
«довольно ВЫСОКИЙ» образуются путем
сопоставления. В четкой логике сопоставление
не имеет смысла, поэтому никакого логического
вывода сделать нельзя. Однако, мы говорим
о человеке, а он, получит путем приближенного
сопоставления вывод:
Если ВЫСОКИЙ, то
Информация о работе Методология нечеткого управления автономной фотоветроэнергетической системой