Автор работы: Пользователь скрыл имя, 10 Февраля 2011 в 04:07, реферат
Математика – это язык. Язык нужен для коммуникации, чтобы передать смысл , возникший у одного человека к другому человеку. Для этого служат предложения этого языка, составленные по определенным правилам.
Введение…………………………………………………………………...1
Математика как язык науки………………………………………………2
Список литературы………………………………………………………..8
Министерство образования РБ
Бурятский
государственный университет
Реферат:
Математика
как язык науки
Выполнила: Дамбаева Дулсан
Гр.№05290
Проверила:
Дондукова Н.Н.
г.Улан-Удэ
2010 г.
Содержание:
Введение…………………………………………………………
Математика как язык науки………………………………………………2
Список литературы…………………………………
Ведение
Математика – это язык. Язык нужен для коммуникации, чтобы передать смысл , возникший у одного человека к другому человеку. Для этого служат предложения этого языка, составленные по определенным правилам.
Почему люди
учат разные языки, что это им дает
кроме возможности общаться в
других странах? Ответ – каждый язык
имеет слова , не существующие в других
языках, поэтому позволяет описывать (и
видеть) такие явления, которые никогда
человек бы не увидел, если бы не знал этого
языка. Знание еще одного языка позволяет
получить еще одно, отличное от других,
видение мира. (У эскимосов в языке существует
20 разных слов для обозначения снега, в
отличие от русского, где всего одно. Хотя,
например, в русском есть такое слово «наст»
для обозначения корки, образующейся на
снегу после оттепели, за которой сразу
наступили заморозки. Есть , вероятно,
и другие слова, описывающие особые состояния
снега).
Математика
как язык науки
Представляя собой тип формального знания, математика занимает особое место в отношении наук фактуального профиля. Она оказывается хорошо приспособленной для количественной обработки любой научной информации, независимо от ее содержания. Более того, во многих случаях математический формализм оказывается единственно возможным способом выразить физические характеристики явлений и процессов, поскольку их естественные свойства и особенно отношения непосредственно не наблюдаемы. Скажем, каким образом в физических терминах описать тяготение, эффекты электромагнетизма и т.п.? Их можно представить только математически как определенные числовые соотношения в законах, фиксируемых количественными показателями. Современная наука в лице квантовой механики и чуть ранее теория относительности лишь прибавили абстрактности теоретическим объектам, вполне лишая их наглядности. Только и остается апеллировать к математике. Заявил же однажды Л. Ландау, что современному физику вовсе не обязательно знать физику, ему достаточно знать математику.
Рассмотренное
обстоятельство и выдвигает математику
на роль языка науки. Пожалуй, впервые
отчетливо это прозвучало у Г.
Галилея, одного из решающих персонажей
в создании математического
По мере
роста абстрактности
Характерно рассуждение замечательного отечественного исследователя В. Налимова, работавшего в области наукометрии, теории математического эксперимента, предложившего вероятностные модели языка. Хорошая наука, пишет он, говорит на языке математики. Мы, люди, почему-то устроены так, что воспринимаем Мироздание через пространство, время и число. Это значит, что мы подготовлены к тому, чтобы обращаться к математике, подготовлены эволюцией живого, то есть априорно. Пытаясь приоткрыть тайную подоплеку математической власти над ученым, Налимов замечает далее: "Меня часто обвиняют, что я применяю математику в исследовании сознания, языковедения, биологической эволюции. Но разве там есть математика как таковая? Вряд ли. Математикой я пользуюсь как Наблюдатель. Так мне удобнее мыслить, иначе я не могу. Пространство, время, число и логика - это прерогатива Наблюдателя".
Ситуация
порой складывается в науке так,
что без применения соответствующего
математического языка понять характер
физического, химического и т.п. процесса
невозможно. Не случайно признание
П. Дирака, что каждый новый шаг
в развитии физики требует все
более высокой математики. Такой
факт. Создавая планетарную модель
атома, известный английский физик
XX в. Э. Резерфорд испытал
Напрашивается вопрос, что же содержится в объективных явлениях такое математическое, благодаря чему они и поддаются описанию на языке математики, на языке количественных характеристик? Это однородные единицы вещества, распределяемые в пространстве и времени. Те науки, которые дальше других прошли путь к выделению однородности, и оказываются лучше приспособленными для использования в них математики. В частности, более всего - физика. В. Ленин, отмечая серьезные успехи естествознания и прежде всего физического знания на рубеже XIX-XX столетий, видел одну из причин именно в том, что природу удалось приблизить "к таким однородным элементам материи, законы движения которых допускали математическую обработку".
Вслед за физикой
идут химические дисциплины, где также
оперируют атомами и
Однако подобная однородность оказывается весьма условной, поскольку "влечения людей" всегда окрашены индивидуальной уникальностью, психологически вариативны, что будет накладывать трудно учитываемые возмущения на постулируемую однородность. Вообще каждое событие в истории общества достаточно своеобразно и не поддается нивелированию в однородные единицы. Хорошая тому иллюстрация - одно рассуждение А. Пуанкаре. Как-то он прочитал у известного английского историка XIX в. Т. Карлейля констатацию: "Здесь прошел Иоанн Безземелный, и этот факт мне дороже, чем все исторические теории". Пуанкаре по сему поводу заметил: "Это язык историка. Физик бы так не сказал. Физик сказал бы: "Здесь прошел Иоанн Безземельный, и мне это совершенно безразлично, потому что больше он здесь не пройдет". Возражение математика Пуанкаре понятно: физику нужна повторяемость, лишь тогда он сможет выводить законы. Наоборот, неповторимость события - тот материал, который питает историческое описание.
Отметим, что
понимание однородности как условия
применимости математического описания
явлений пришло в науку довольно
поздно. До известного времени считали
невозможным отвлечься от предметных
значений, чтобы перейти к числовым
характеристикам. Так, еще Г. Галилей,
один из основателей математического
естествознания, не хотел принимать
скорость равномерного прямолинейного
движения в форме
. Он полагал, что действие деления пути
на время физически некорректно, поскольку
необходимо было делить километры, метры,
и т.п. на часы, минуты, и т.п. То есть считал,
недопустимым проводить операцию деления
с качественно неоднородными величинами.
Для Галилея уравнение скорости имело
чисто содержательное значение, но отнюдь
не математическое отношение величин.
И лишь столетия спустя академик Петербургской
академии наук Л. Эйлер, вводя в научный
обиход формулу
, разъяснил, что мы делим этим не путь
на время и, следовательно, не километры
или метры на часы, либо минуты, а одну
количественную размерность на другую,
одно отвлеченное числовое значение на
другое. Как замечает М. Розов, Эйлер указанным
актом совершил знаково-предметную инверсию,
переведя содержательное описание в алгебраически-отвлеченное63.
То есть Эйлер принимает качественно данные
километры, метры, часы, минуты и т.п. в
качестве абстрактной меры за единицы
измерения и тогда имеем уже, скажем, не
10 метров, а 10 отвлеченных единиц, которые
делим, положим, не на 2 секунды, а на две
столь же абстрактные единицы. Таким приемом
нам удается качественно разнородные
предметы, имеющие пространственную и
временную определенность инвертировать
в однородность, что и позволяет применить
математический количественный язык описания.
Список литературы
Б.В. Гнеденко. Введение в специальность "Математика". - М.: Наука, 1984
В.Н. Страхов. Геофизика и математика // Физика Земли. 1995. № 12.
Р.С. Гутер., Ю.Л. Полунов. От атома до компьютера.: Знание, 1981.
Ресурсы Internet