Автор работы: Пользователь скрыл имя, 25 Января 2011 в 20:53, реферат
В последнее время математическим играм внимание уделяется, в основном, для нахождения выигрышных стратегий, на что сильно повлияло распространение программирования: составить алгоритм, по которому в игру смог бы играть компьютер, часто бывает сложнее и интереснее, нежели самому научиться играть в неё, при этом глубже вникаешь в суть игры, после чего выиграть в неё можешь уже практически любого.
Ниже
приведён список самых распространённых
“минимальных” операций, которыми
пользуются при собирании кубика
Рубика. Следует заметить, что это
лишь универсальные комбинации, а
для создания более совершенного
алгоритма собирания кубика, нужно разработать
более “глобальные” операции, которые
человеку запомнить довольно трудно, но
в общем уменьшающие количество действий,
необходимых для собирания кубика из каждого
конкретного положения.
Первый
слой
Операция “лесенка”
(лифт) 1:
Н’П’НП
Операция “лесенка”
(лифт) 2:
НЛН’Л’
Сложная
лесенка:
Н’П’Н2П
Второй
слой
Две лесенки 1:
НЛН’Л’Н’Ф’НФ
Две лесенки 2:
Н’П’НПНФН’Ф’
Третий слой
Выполняются
только по две комбинации с поворотом
верхней грани между ними:
(ПСн)4
Операция “Обмен” 1:
Ф2В’СпВ2СлВ’Ф2
Операция “Обмен”
2:
Л’Т’П’ТЛТ’ПТ
(Ф’ПФП’)2
Две последние
операции выполняются лишь парами,
либо по отдельности, но по два раза
подряд с возможным поворотом
верхней грани между
(ПФ’П’Ф)2
“Игры с дыркой”
До изобретения кубика Рубика для многих людей знакомство с головоломками начиналось с “пятнашек” – так часто называют известную игру “15”.
С пятнашек начинается история игр с дыркой – головоломок, в которых фишки перемещаются по игровому полю за счёт того, что одно из мест на поле свободно. У “пятнашек” есть множество родственников, которые как раз и образовывают целый раздел этих головоломок.
Игру “15” придумал в 70-х годах XIX-го века прославленный американский изобретатель головоломок Сэмюэль Лойд. Время появления его игрушки и известного всем кубика Рубика разделяют ровно сто лет. Любопытно, что возраст обоих изобретателей, когда они придумали свои знаменитые головоломки, был одинаков – немногим больше тридцати. До “пятнашек” никакая другая головоломка таким успехом не пользовалась.
Великий
Марк Твен, будучи современником Лойда
и свидетелем всеобщего ажиотажа
вокруг игры “15”, включил в свою
сатирическую повесть “Американский
претендент” изложение
Вскоре после своего появления на свет коробочка с цифрами 15 на крышке пересекла океан, быстро распространилась во всех европейских странах и поучила новое имя “такен”. Изобретателю посчастливилось найти ту неуловимую меру сложности, когда головоломка решалась без труда почти всеми и в то же время требовала определённой сообразительности, благодаря чему каждый мог получить удовольствие от сознания своего высокого интеллектуального уровня.
Первому успеху головоломки в немалой степени способствовало и напечатанное в газетах объявление о призе в 1000$ за решение следующей задачи: в исходной позиции фишки располагаются по порядку номеров, за исключением двух последних, которые переставлены местами друг с другом (рис. 4); передвигая по одной фишке, но не вынимая фишки из коробочки, нужно поменять местами номера 15 и 14 так, чтобы все фишки стояли по порядку номеров, а правый нижний угол был свободен.
Помещая это объявление, Лойд знал, что ничем не рискует, так как предлагает неразрешимую задачу. Эта задача ещё сыграла с изобретателем злую шутку, когда он пытался запатентовать свою игру, – ему сказали, что нельзя запатентовать игру, не имеющую решения.
Секрет
игры “15”
Не всегда можно головоломку перевести из одного состояния в другое, — запрещены такие переходы, при которых нарушаются те или другие законы сохранения. Есть такой закон и в игре “15”. Чтобы объяснить его, мысленно заполним пустое место фишкой с номером 16. Тогда каждый ход — сдвиг фишки — будет состоять в том, что эта фишка меняется местами с фишкой 16. Операцию, при которой какие-то две фишки (не обязательно соседние!) меняются местами, так и назовем — обменом; математический термин для таких операций — транспозиция. Очевидно, что из любой расстановки 16 фишек можно не более чем за 15 обменов получить правильную позицию — обозначим ее S0 — и вообще любую другую расстановку. При этих обменах не запрещается вынимать фишки из коробки. Например, можно сначала поставить на свое место фишку 1, обменяв ее с той фишкой, которая это место занимает, затем точно так же поставить на место фишку 2 и т. д. Последними мы обменяем фишки 15 и 16 — при этом сразу обе встанут правильно. Конечно, не исключено, что по ходу дела какие-то фишки автоматически попадут на свои места, и их трогать не придется, при этом число обменов окажется меньше 15. Можно расставлять фишки по этой же системе, но в другом порядке, скажем 16, 15, 14, .... или совсем иначе, и тогда число обменов может оказаться другим. Однако, каким бы способом ни выбрать последовательность обменов, превращающую одну заданную расстановку фишек в другую, четность числа обменов в этой последовательности всегда будет одной и той же.
Это очень важное и неочевидное докажем ниже. Оно позволяет дать следующее определение: расстановка называется четной, если ее можно превратить в правильную позицию с помощью четного числа обменов, и нечетной в противном случае. В математике обычно говорят не “расстановка”, а “перестановка”; к этому мы еще вернемся. Сама правильная расстановка S0 всегда четная, а ловушка Лойда L нечетная. Но почему они не переводятся друг в друга?
Как выше уже сказано, каждый ход в игре “15” можно рассматривать как обмен фишки с одной из соседних. Следовательно, при каждом ходе четность расстановки 16 фишек меняется: если до хода расстановку можно было упорядочить за N обменов, то после него — за N+1 обменов (взяв этот ход назад), а числа N и N+1 — разной четности. В обеих расстановках классической задачи Лойда дырка (или фишка 16) расположена одинаково. Если бы мы сумели одну расстановку перевести в другую, то фишка 16 должна была совершить столько же ходов вверх, сколько вниз, и столько же ходов вправо, сколько влево, иначе она не вернулась бы назад. Поэтому мы сделали бы четное число ходов, а так как при каждом ходе четность расстановки меняется, в начале и в конце она была бы одинаковой. Но позиции S0 и L, как мы видели, имеют разную четность.
Мы
рассмотрели лишь малую часть
замечательных головоломок, которые
придумали математики разных времён,
но если когда-нибудь ещё и изобретут
головоломку более популярную, чем,
например, игра “15”, то известней знаменитого
кубика Рубика наверняка – нет!
Список литературы