Математическая игра как средство развития познавательного интереса учащихся

Автор работы: Пользователь скрыл имя, 14 Июля 2015 в 13:59, курсовая работа

Описание работы

Познавательный интерес в трудах психолог и педагогов изучен достаточно тщательно. Но все-таки остаются не решенными некоторые вопросы. Главный из них – как вызвать устойчивый познавательный интерес.
С каждым годом дети все равнодушнее относятся к учебе. В частности понижается у учеников к такому предмету как математика. Этот предмет воспринимается учащимися как скучный и совсем не интересный. В связи с этим учителями ведется поиск эффективных форм и методов обучения математике, которые способствовали бы активизации учебной деятельности, формированию познавательного интереса.

Содержание работы

Введение 4
Глава I. Формирование познавательного интереса учащихся 7
§1 Психолого-педагогические основы познавательного интереса 7
§2 Познавательный интерес и пути его формирования 10
2.1 Познавательный интерес, стадии его развития 10
2.2 Условия формирования познавательного интереса 16
2.3 Формирование познавательных интересов в обучении математике 19
Глава II. Внеклассная работа по математике как средство развития познавательного интереса учащихся 24
§1 Значение внеклассной работы по математике как средства развития познавательного интереса 24
§2 Математическая игра как форма внеклассной работы по математике 30
Глава III. Математическая игра как средство развития познавательного интереса учащихся 34
§ 1 Психолого-педагогические основы математической игры 34
§ 2 Математические игры как средство развития познавательного интереса к математике 38
2.1 Актуальность 38
2.2 Цели, задачи, функции, требования математической игры 41
2.3 Виды математических игр 44
2.4 Структура математической игры 63
2.5 Организационные этапы математической игры 65
2.6 Требования к подбору задач 67
2.7 Требования к проведению математической игры 70
Глава IV. Опытное преподавание 74
§1 Анкетирование учителей и учеников 74
§2 Наблюдения, личный опыт 80
Заключение 85
Библиографический список 86

Файлы: 1 файл

диплом.doc

— 1.63 Мб (Скачать файл)

Качественные же игры направлены на серьезные вычисления, требует вдумчивой работы над трудными задачами, теоремами. Такие игры способствуют пробуждению мыслительной деятельности учащихся, заставляют их активно думать над задачей, развивают настойчивость, упорство, что необходимо во внеклассной работе по математике. Неразрешимые, казалось бы, сложные задачи способствуют повышению умственного труда, упорства, и, как следствие, желанию узнать больше, появлению интереса к предмету.

  1. Наконец, различают игры одиночные и универсальные.

К одиночным играм относят те игры, правила которых не допускают изменения содержания игры, они разработаны с учетом особенностей конкретного материала.

Универсальные игры же, наоборот, позволяют менять свое содержание. Они разрабатываются по широкому кругу вопросов школьной программы, могут использоваться в различных целях, на различных внеклассных мероприятиях, и поэтому являются очень ценными.

Приведем еще одну классификацию игр по схожести правил и характера проведения. Данная классификация будет включать в себя следующие виды игр:

  • Настольные игры;
  • Математические мини-игры;
  • Викторины;
  • Игры по станциям;
  • Математические конкурсы;
  • КВНы;
  • Игры-путешествия;
  • Математические лабиринты;
  • Математическая карусель;
  • Бои;
  • Разновозрастные.

В дальнейшем мы будем рассматривать только эти виды игр.

Некоторые из выше перечисленных видов игр могут быть включены в другие, более большие математические игры, как один из их этапов. Теперь же рассмотрим конкретно каждый вид.

Настольные игры.

К настольным играм относят такие математические игры как математическое лото, игры на шахматной доске, игры со спичками, различные головоломки и т.п. Подготовительный этап таких игр проводится в основном перед самой игрой, на нем разъясняются в основном правила игры. Настольные математические игры не рассматриваются как отдельная форма внеклассного занятия, а используются обычно как часть занятия, могут быть включены в другие математические игры. Дети могут играть в них в любое свободное время, даже на перемене (например, разгадывать какую либо головоломку).

Рассмотрим некоторые из наиболее распространенных настольных игр.

Математическое лото. Правила у игры те же, что и при игре в обычное лото. Каждый из учеников получает карту, на которой написаны ответы. Ведущий игры берет пачку карточек, на которых написаны задания и вытаскивает одну из них. Читает задание, показывает всем участникам игры. Участники решают задания устно или письменно, получают ответ, находят его у себя на игральной карточке. Закрываю этот ответ специально заготовленными фишками. Выигрывает тот, кто первый закроет карточку. Проверка правильности закрытия карты обязательна, она является не только контролирующим моментом, но и обучающим. Можно заготовить жетоны таким образом, что после закрытия всей карты, у учащегося получился с помощью этих жетонов рисунок, тем самым можно проверить правильность закрытия карты. Перед началом игры можно провести разминку, на которой вспоминаются формулы, правила, знания, необходимые для проведения игры.

Игры со спичками. Данные игры могут проводиться в различной форме, но суть у них остается одна, учащимся даются задания, в которых нужно построить фигуру из спичек, путем перемещения одной или нескольких спичек получить другую фигуру. Вопрос игры и заключается в том, какую именно спичку нужно переложить.

Очень нравятся детям игры-головоломки. В них нужно расположить особым образом определенные фигуры или числа в таблице. Возможен и другой вариант такой игры. Например, игра, где из различной формы кусочков бумаги нужно собрать фигуру, да еще попытаться найти, как можно больше различных вариантов сбора.

Так же встречаются настольные игры-поединки между двумя участниками. Это такие игры как крестики-нолики в различных вариациях, игры на шахматной доске, игры с использованием спичек и многие другие. В таких играх необходимо выбрать нужную, выигрышную стратегию. Проблема и заключается в том, что сначала нужно догадаться какая именно стратегия является выигрышной. В математике даже существует такой тип нестандартных задач, где как раз нужно найти выигрышную стратегию игры и обосновывать ее математически (теория игр).

Примером такой игры может служить следующая игра. На стол кладутся спички в ряд. Играют двое игроков. Они по очереди берут одну, две или три спички. Выигрывает тот, кто берет последнюю спичку.

Настольные игры настолько многообразны, что описать их общую структуру очень сложно. Общее у них то, что они в основном не подвижные, индивидуальные, требуют умственного труда. Они захватывают и заинтересовывают учащихся, развивают у них настойчивость и упорство в достижении цели, способствуют возникновению интереса к математике.

Математические мини-игры.

На самом деле настольные игры тоже можно назвать мини-играми, но в них входят в основном «тихие» игры. К этому же виду относятся небольшие подвижные игры, которые могут быть включены как один из этапов в более большие математические игры, так и быть часть внеклассного занятия.

Чем же отличаются эти игры от остальных? В таких играх дети в основном решают задания и получают за это определенное количество очков. Выбор задания проходит в различных игровых формах. К таким играм можно, например, отнести «Математическую рыбалку», «Математическое казино», «Стрельба по мишеням», «Математическое (чертово) колесо» и т.п. Такие игры состоят из следующих этапов. Сначала ученик производит какое-либо игровое действие (вылавливает рыбку из пруда, кидает дротиком в мишень, бросает игральные кости и др.). В зависимости от того, какой будет результат этого действия (какую рыбку поймал, сколько очков выпало на игральных костях, в какую часть мишени попал и др.) ученику выдается определенная задача, которую он должен решить. Решив эту задачу, ученик получает свои заслуженные баллы и право получить новую задачу, совершив при этом соответствующее игровое действие.

В «Математическом казино» ученик бросает кости только после решения задачи, тем самым, определяя свои выигранные баллы. В игре «Математическое (или чертово) колесо» игроки двигаются как бы по кругу, в котором имеется начальный и конечный этап, бросая кости, они тем самым определяют, на какой этап этого колеса они попадают. Не решив задачу, они возвращаются на предыдущий этап и, чтобы вновь получить право бросить кости решают задачу этого этапа. Выигрывает игрок, сумевший выйти из этого круга или набравший большее количество баллов. Огромную роль для выигрыша здесь имеет удача участника игры. Поэтому то эту игру часто называют «Чертовым колесом».

Все эти игры ограничены по времени. В конце игры подсчитываются баллы и определяются победители.

Математические мини-игры как бы имитируют определенную (жизненную) ситуацию: ловля рыбы, игру в казино и другие, благодаря этому мини-игры завлекают детей, у школьников возникает интерес, они стремятся правильно решить как можно больше задач, прилагая к этому все свои силы и знания.

Среди мини-игр также можно выделить небольшую группу игр-соревнований. К таким играм можно отнести, например, «Математическую эстафету», различные конкурсы капитанов, входящие в более крупные математические игры. Это в основном игры на скорость выполнения заданий, но и качество их выполнения играет тоже не последнюю роль. Это могут быть как командные соревнования, так и между двумя участниками. Эти игры насыщены эмоциональными переживаниями, что свойственно обычным соревнованиям, где нужно быстрее и лучше соперника справиться с поставленной задачей. Поэтому они очень нравятся школьникам, и включение их во внеклассные занятия или другие игры по математике способствует развитию интереса учащихся.

Математические викторины.

Казалось бы, этот тип игры тоже мог бы быть включен в предыдущий тип игр, но ярко выраженной игровой ситуации в них не наблюдается. Математические викторины очень часто включаются в математические вечера, в занятии математического кружка, используются как этап другой математической игры.

Математические викторины легко организовать. В них может принять участие каждый желающий. Суть их заключается в том, что участникам задаются вопросы, на которые они должны ответить. Викторины проводятся по-разному, в зависимости от числа участников.

Если участников не очень много, то каждый вопрос или задача зачитываются человеком, проводящим викторину. На обдумывание ответа дается несколько минут. Отвечает тот, кто первым поднимет руку. Если ответ не полный, то можно предоставить возможность высказаться еще и другому участнику. За правильный ответ присуждается определенное количество очков.

Если же участников много, то текст всех вопросов и задач выписываются на доске, на отдельных плакатах или раздаются школьникам на отдельных листах, где они пишут ответы и краткое объяснение. Потом листочки сдаются жюри, где они проверяются, подсчитываются баллы.

Победителями становятся участники, набравшие наибольшее количество баллов.

Возможны случаи, когда викторины проводятся для команд. В этом случае каждой команде зачитывается определенное количество вопросов, возможны варианты ответов на них. Участники команд должны за определенное время ответить правильно на как можно большее количество вопросов. Выигрывает команда, давшая больше правильных ответов. Вопросы, задаваемые командам должны быть равноценными.

С помощью викторин можно не только заинтересовать учащихся математикой, используя необычной формы вопросы, но и проконтролировать уровень их знаний предмета (особенно в том случае, когда она проходит в письменной форме).

Рассмотренные выше игры могут включаться во внеклассные занятия по отдельности, а могут и в своей совокупности составлять большой блок игр, занятие в игровой форме, то есть большую математическую игру. Эта игра может быть проведена в различных формах. В зависимости от характера проведения таких игр различают следующие виды:

Игры по станциям.

В играх данного типа обычно перед участниками ставиться определенная игровая цель, в зависимости от общего сюжета игры, ее темы. Это может быть цель найти клад, собрать карту, дойти до конечной станции (таинственного города) и т.п.

Как видно из названия данные игры проводятся по станциям. В такой игре обычно участвуют команды, и именно они ходят по станциям, выполняют на каждой из них определенные задания и получают за это баллы, часть карты, либо подсказки, помогающие достичь участникам поставленной перед ними цели. Каждая из станций представляет собой небольшую игру. Команды ходят по станциям, пользуясь специально выданными им листами-путеводителями. Игра по станциям проходит обычно в нескольких кабинетах, в которых располагаются различные станции. В таких играх участвуют обычно несколько классов, поэтому они являются массовыми и продолжительными по времени. Для проведения такой игры требуется много людей. В школе для проведения подобной игры по станциям могут привлекаться старшие классы. Итогом игры является достигнутая командами цель игры.

Игры такого вида имеют необычный сюжет и часто являются театрализованными, то есть в ее начале разыгрывается какая-нибудь ситуация с помощью которой перед участниками ставится цель игры. Отдельные станции, по которым будут ходить участники, тоже могут быть театрализованы. Эта необычность очень привлекает и заинтересовывает не только участников игры, но и учеников принимающих участие в проведении игры. У школьников возникает интерес к математике, они по новому воспринимают этот, казалось бы, «скучный» и «сухой», неинтересный предмет.

К такому виду игр можно отнести «Математические следопыты», «Математический поезд», «Математический кросс» и другие.

Математические конкурсы.

Математические конкурсы можно рассматривать как часть большой игры или вечера (например, конкурс капитанов). Так же конкурс можно рассматривать как соревнование по выполнению какой-либо работы или проекта (конкурс на лучшую математическую сказку, конкурс на лучшую математическую газету и т.п.). Здесь же будут рассматриваться математические конкурсы как отдельные самостоятельные мероприятия, математические игры, в состав которых могут входить как их элементы другие более мелкие математические игры (например, викторины, эстафеты и др.).

Математические конкурсы - это соревнования, которые могут проводиться как между отдельными участниками игры, так и между командами. Это наиболее часто используемый тип математических игр. К нему можно отнести такие игры как «Звездный час», «Счастливый случай», «Колесо математики» и другие.

В конкурсе всегда есть победитель и он единственный, возможен случай и ничьей. При проведении математических конкурсов обычно присутствуют не только сами участники игры, но и зрители, болеющие за них. Поэтому в таких видах игр всегда предусмотрены и задания (конкурсы) для зрителей.

Особой подготовки участников к игре не требуется. В основном нужно лишь собрать команду и разобрать примерные задания. Данный тип игр настолько разнообразен и универсален, что позволяет проводить внеклассные занятия по математике как можно чаще в форме математической игре, и тем самым привлечь к ним больше учеников. Школьники заинтересовываются и даже иногда сами изъявляют желание придумать свою математическую игру и провести ее.

КВНы.

КВН - это тоже математический конкурс. Но он настолько популярен и необычен, что отнесем его в отдельную группу математических игр.

КВНы проводятся между несколькими командами. Эти команды заранее готовятся к игре, придумывают приветствие другим командам, домашнее задание, в виде представления.

Информация о работе Математическая игра как средство развития познавательного интереса учащихся