Автор работы: Пользователь скрыл имя, 25 Марта 2011 в 06:33, курсовая работа
Оглавление
Цель данной работы является изучение теоретических аспектов кластерного анализа, ознакомление с практическим применением кластерного анализа и исследование расстояния между объектами и кластерами.
Курсовая работа включает в себя теоретическую часть, в которой рассматриваются задачи курса многомерных статистических методов и производится излагание основной части работы - описание класстерного анализа, а также практичская часть работы.
Введение……..……………………………………….……..3
ГЛАВА 1. Многомерные статистические методы….…….4
1.1 Введение в кластерный анализ..……………..….…….4
1.2 Задача кластерного анализа…………...……….……...7
1.3 Методы кластерного анализа………………………...11
ГЛАВА 2. Расстояние между объектами. Расстояние между кластерами………………………………………………...13
2.1 Расстояние между объектами (клстерами) и мера близости…………………………………………………..13
2.2 Расстояние между кластерами……………………….18
ГЛАВА 3. Применение кластерного анализа………………..21
Заключение……………………………………………..28
Список использованной литературы…………………
Задача
кластерного анализа
Например, пусть G включает n стран, любая из которых характеризуется ВНП на душу населения (F1), числом М автомашин на 1 тысячу человек (F2), душевым потреблением электроэнергии (F3), душевым потреблением стали (F4) и т.д. Тогда Х1 (вектор измерений) представляет собой набор указанных характеристик для первой страны, Х2 - для второй, Х3 для третьей, и т.д. Задача заключается в том, чтобы разбить страны по уровню развития.
Решением задачи кластерного анализа являются разбиения, удовлетворяющие некоторому критерию оптимальности. Этот критерий может представлять собой некоторый функционал, выражающий уровни желательности различных разбиений и группировок, который называют целевой функцией. Например, в качестве целевой функции может быть взята внутригрупповая сумма квадратов отклонения:
где xj - представляет собой измерения j-го объекта.
Для решения задачи кластерного анализа необходимо определить понятие сходства и разнородности.
Понятно то, что объекты i-ый и j-ый попадали бы в один кластер, когда расстояние (отдаленность) между точками Хi и Хj было бы достаточно маленьким и попадали бы в разные кластеры, когда это расстояние было бы достаточно большим. Таким образом, попадание в один или разные кластеры объектов определяется понятием расстояния между Хi и Хj из Ер, где Ер - р-мерное евклидово пространство. Неотрицательная функция d(Хi , Хj) называется функцией расстояния (метрикой), если:
а) d(Хi , Хj) ³ 0, для всех Хi и Хj из Ер
б) d(Хi, Хj) = 0, тогда и только тогда, когда Хi = Хj
в) d(Хi, Хj) = d(Хj, Хi)
г) d(Хi, Хj) £ d(Хi, Хk) + d(Хk, Хj), где Хj; Хi и Хk - любые три вектора из Ер.
Значение d(Хi, Хj) для Хi и Хj называется расстоянием между Хi и Хj и эквивалентно расстоянию между Gi и Gj соответственно выбранным характеристикам (F1, F2, F3, ..., Fр).
Наиболее часто употребляются следующие функции расстояний:
1. Евклидово расстояние d2(Хi , Хj) =
2. l1 - норма d1(Хi , Хj) =
3. Сюпремум - норма d¥ (Хi , Хj) = sup
k = 1, 2, ..., р
4. lp - норма dр(Хi , Хj) =
Евклидова метрика является наиболее популярной. Метрика l1 наиболее легкая для вычислений. Сюпремум-норма легко считается и включает в себя процедуру упорядочения, а lp - норма охватывает функции расстояний 1, 2, 3,.
Пусть n измерений Х1, Х2,..., Хn представлены в виде матрицы данных размером p ´ n:
Тогда расстояние между парами векторов d(Хi , Хj) могут быть представлены в виде симметричной матрицы расстояний:
Понятием, противоположным расстоянию, является понятие сходства между объектами Gi. и Gj. Неотрицательная вещественная функция S(Хi ; Хj) = Sij называется мерой сходства, если :
1) 0£ S(Хi , Хj)<1 для Хi ¹ Хj
2) S(Хi , Хi) = 1
3) S(Хi , Хj) = S(Хj , Хi)
Пары значений мер сходства можно объединить в матрицу сходства:
Величину
Sij называют коэффициентом сходства.
1.3. Методы кластерного анализа.
Сегодня существует достаточно много методов кластерного анализа. Остановимся на некоторых из них (ниже приводимые методы принято называть методами минимальной дисперсии).
Пусть Х - матрица наблюдений: Х = (Х1, Х2,..., Хu) и квадрат евклидова расстояния между Хi и Хj определяется по формуле:
1) Метод полных связей.
Суть данного метода в том, что два объекта, принадлежащих одной и той же группе (кластеру), имеют коэффициент сходства, который меньше некоторого порогового значения S. В терминах евклидова расстояния d это означает, что расстояние между двумя точками (объектами) кластера не должно превышать некоторого порогового значения h. Таким образом, h определяет максимально допустимый диаметр подмножества, образующего кластер.
2) Метод максимального локального расстояния.
Каждый
объект рассматривается как
3) Метод Ворда.
В
этом методе в качестве целевой функции
применяют внутригрупповую
4) Центроидный метод.
Расстояние между двумя кластерами определяется как евклидово расстояние между центрами (средними) этих кластеров:
d2
ij = (`X
–`Y)Т(`X
–`Y)
Кластеризация идет поэтапно на каждом
из n–1 шагов объединяют два кластера G
и p,
имеющие минимальное значение d2ij Если
n1 много больше n2, то центры объединения
двух кластеров близки друг к другу и характеристики
второго кластера при объединении кластеров
практически игнорируются. Иногда этот
метод иногда называют еще методом взвешенных
групп.
2. Расстояние между объектами. Расстояние между кластерами.
2.1. Расстояние между объектами (кластерами) и мера близости
Наиболее трудным и наименее формализованным в задаче классификации является определение понятия однородности объектов. В общем случае понятие однородности объектов задается либо введение правила вычисления расстояний ρ(xi,xj) между любой парой исследуемых объектов (х1, х2, ... , хn), либо заданием некоторой функции r(xi,xj), характеризующей степень близости i-го и j-го объектов. Если задана функция ρ(xi,xj), то близкие с точки зрения этой метрики объекты считаются однородными, принадлежащими к одному классу. Очевидно, что необходимо при этом сопоставлять ρ(хi,xj) с некоторыми пороговыми значениями, определяемыми в каждом конкретном случае по-своему.
Аналогично используется и мера близости r(xi,xj), при задании которой мы должны помнить о необходимости выполнения следующих условий: симметрии r(xi,xj)= r(xj,xi); максимального сходства объекта с самим собой r(xi,xi)= r(x i,xj), при 1≤ i,j≤n, и монотонного убывания r(xi,xj) по мере увеличения ρ(xi,xj), т.е. из ρ(xk,xl)≥ρ (xi,xj) должно следовать неравенство r(xk,xl)≤r(xi,xj).
Выбор метрики или меры близости является узловым моментом иссле-дования, от которого в основном зависит окончательный вариант разбиения объектов на классы при данном алгоритме разбиения. В каждом конкретном случае этот выбор должен производиться по-своему в зависимости от целей исследования, физической и статистической природы вектора наблюдений Х, априорных сведений о характере вероятностного распределения Х.
Рассмотрим наиболее широко используемые в задачах кластерного анализа расстояния и меры близости.
Обычное Евклидово расстояние
(1.1)
где хie,, xje - величина е-ой компоненты у i-го (j-го) объекта (е=1,2,...,к, i,j=1,2,...,n)
Использование этого расстояния оправдано в следующих случаях:
а) наблюдения берутся из генеральной совокупности, имеющей многомерное нормальное распределение с ковариационной матрицей вида σ2Ек, т.е. компоненты Х взаимно независимы и имеют одну и ту же дисперсию, где Ек - единичная матрица;
б) компоненты вектора наблюдений Х однородны по физическому смыслу и одинаково важны для классификации;
в) признаковое пространство совпадает с геометрическим пространством.
Естественное с геометрической точки зрения евклидово пространство может оказаться бессмысленным (с точки зрения содержательной интерпретации), если признаки измерены в разных единицах. Чтобы исправить положение, прибегают к нормированию каждого признака путем деления центрированной величины на среднее квадратическое отклонение и переходят от матрицы Х к нормированной матрице с элементами
где - значение e-го признака у i-го объекта
- среднее значение e-го признака;
- среднее квадратическое
Однако эта операция может привести к нежелательным последствиям. Если кластеры хорошо разделены по одному признаку и не разделены по другому, то после нормирования дискриминирующие возможности первого признака будут уменьшены в связи с увеличением “шумового” эффекта второго.
“Взвешенное” Евклидово пространство
(1.2)
применяется в тех случаях, когда каждой компоненте xl вектора наблюдений X удается приписать некоторый “вес” ωl, пропорционально степени важности признака в задаче классификации. Обычно принимают 0≤ωe≤1, где e=1,2,...k.
Определение “весов”, как правило, связано с дополнительными исследованиями, например, организацией опроса экспертов и обработкой их мнений. Определение весов ωl только по данным выборки может привести к ложным выводам.
Хеммингово расстояние
Используется как мера различия объектов, задаваемых дихотомическими признаками. Это расстояние определяется по формуле
(1.3)
и равно числу несовпадений значений соответствующих признаков в рассматриваемых i-м и j-м объектах.
В
некоторых задачах
В данной задаче объектом классификации является отрасль народного хозяйства, а матрица межотраслевого баланса представлена элементами sij, характеризующими сумму годовых поставок i-ой отрасли в j-ю в денежном выражении. В качестве меры близости {rij} принимают симметризованную нормированную матрицу межотраслевого баланса. С целью нормирования денежное выражение поставок i-ой отрасли в j-ю заменяют долей этих поставок по отношению ко всем поставкам i-ой отрасли. Симметризацию же нормированной матрицы межотраслевого баланса можно проводить, выразив близость между i-й и j-й отраслями через среднее значение из взаимных поставок, так что в этом случае rij=rji.
Информация о работе Кластерный анализ. Расстояние между объектами. Расстояние между кластерами