Автор работы: Пользователь скрыл имя, 06 Января 2014 в 15:30, реферат
Теорию вероятностей можно определить как раздел математики, в котором изучаются закономерности присущие случайным событиям. Методы теории вероятностей широко применяются при математической обработке результатов измерений, а также во многих задачах экономики, статистики, страхового дела, массового обслуживания. Отсюда не трудно догадаться, что и в авиации теория вероятностей находит очень широкое применение.
Введение 3
Глава 1. Основные понятия теории вероятностей. 4
Глава 2. История зарождения и развития теории вероятностей. 7
Заключение 14
Список использованной литературы 15
Учеником В. Я. Буняковского был великий русский математик П. Л. Чебышев (1821 - 1894). Среди обширных и разнообразных математических трудов П. Л. Чебышева заметное место занимают его труды по теории вероятностей. П. Л. Чебышеву принадлежит дальнейшее расширение и обобщение закона больших чисел. Кроме того, П. Л. Чебышев ввел в теорию вероятностей весьма мощный и плодотворный метод моментов.
Учеником П. Л. Чебышева был А. А. Марков (1856 - 1922), также обогативший теорию вероятностей открытиями и методами большой важности. А. А. Марков существенно расширил область применения закона больших чисел и центральной предельной теоремы, распространив их не только на независимые, но и на зависимые опыты. Важнейшей заслугой А. А. Маркова явилось то, что он заложил основы совершенно новой ветви теории вероятностей – теории случайных, или «стохастических», процессов. Развитие этой теории составляет основное содержание новейшей, современной теории вероятностей.
Учеником П. Л. Чебышева был
и А. М. Ляпунов (1857 - 1918), с именем которого
связано первое доказательство центральной
предельной теоремы при чрезвычайно
общих условиях. Для доказательства
своей теоремы А. М. Ляпунов разработал
специальный метод
Характерной особенностью работ Петербургской математической школы была исключительная четкость постановки задач, полная математическая строгость применяемых методов и наряду с этим тесная связь теории с непосредственными требованиями практики. Трудами ученых Петербургской математической школы теория вероятностей была выведена с задворков науки и поставлена как полноправный член в ряд точных математических наук. Условия применения её методов были строго определены, а самые методы доведены до высокой степени совершенства.
Современное развитие теории вероятностей характерно всеобщим подъемом интереса к ней и резким расширением круга её практических применений. За последние десятилетия теория вероятностей превратилась в одну из наиболее быстро развивающихся наук, теснейшим образом связанную с потребностями практики и техники. Советская школа теории вероятностей, унаследовав традиции Петербургской математической школы, занимает в мировой науке ведущее место.
Здесь мы назовем только некоторых крупнейших советских ученых, труды которых сыграли решающую роль в развитии современной теории вероятностей и её практических приложений.
С. Н. Бернштейн разработал первую законченную аксиоматику теории вероятностей, а также существенно расширил область применения предельных теорем.
А. Я. Хинчин (1894 - 1959) известен своими исследованиями в области дальнейшего обобщения и усиления закона больших чисел, но главным образом своими исследованиями в области так называемых стационарных случайных процессов.
Ряд важнейших основополагающих работ в различных областях теории вероятностей и математической статистики принадлежат А. Н. Колмогорову. Он дал наиболее совершенное аксиоматическое построение теории вероятностей, связав её с одним из важнейших разделов современной математики – метрической теорией функций. Особое значение имеют работы А. Н. Колмогорова в области теории случайных функций (стохастических процессов), которые в настоящее время являются основой всех исследований в данной области. Работы А. Н. Колмогорова, относящиеся к оценке эффективности, легли в основу целого нового научного направления в теории стрельбы, переросшего затем в более широкую науку об эффективности боевых действий.
В. И. Романовский (1879 - 1954) и Н. В. Смирнов известны своими работами в области математической статистики, Е. Е. Слуцкий (1880 - 1948) – в теории случайных процессов, Б. В. Гнеденко – в области теории массового обслуживания, Е. Б. Дынкин – в области марковских случайных процессов, В. С. Пугачев – в области случайных процессов в применении к задачам автоматического управления.
Развитие зарубежной теории
вероятностей в настоящее время
также идет усиленными темпами в
связи с настоятельными требованиями
практики. Преимущественным вниманием
пользуются, как и у нас, вопросы,
относящиеся к случайным
За последние годы мы стали
свидетелями рождения новых и
своеобразных методов прикладной теории
вероятностей, появление которых
связано со спецификой исследуемых
технических проблем. Речь идет, в
частности, о таких дисциплинах,
как «теория информации» и
«теория массового
Заключение
Вероятностные идеи стимулируют в наши дни развитие всего комплекса знаний, начиная от наук о не живой природе и кончая науками об обществе. Прогресс современного естествознания неотделим от использования и развития вероятностных идей и методов. В наше время трудно назвать какую-либо область исследований, где бы не применялись вероятностные методы.
Список использованной литературы
Информация о работе История зарождения и развития теории вероятностей