Автор работы: Пользователь скрыл имя, 17 Сентября 2010 в 11:44, Не определен
Целью изучения курса алгебры и начал анализа в 10-11 классах является систематическое изучение функций, раскрытие прикладного значения общих методов математики, связанных с исследованием функций
МОУ
средняя общеобразовательная
школа № 18.
«Исследование
функции с помощью
производной».
Реферат
по математике ко Дню науки.
Смоленск 2005
План.
Введение. 3
Глава I. Развитие понятия функции. 4
Глава II. Основные свойства функции. 7
2.1. Определение функции и графика функции. Область определения и
область значений функции. Нули функции. 7
2.2. Виды функций (четные, нечетные, общего вида, периодические
функции). 8
2.3. Возрастание
и убывание функций.
Глава III. Исследование функций. 12
3.1. Общая схема исследования функций. 12
3.2. Признак возрастания и убывания функций. 12
3.3. Критические точки функции, максимумы и минимумы. 13
3.4. Наибольшие
и наименьшие значения функции.
Глава IV. Примеры применения производной к исследованию функции. 15
Заключение. 22
Список литературы 23
Введение.
Изучение
свойств функции и построение
ее графика являются одним из самых
замечательных приложений производной.
Этот способ исследования функции неоднократно
подвергался тщательному
Целью изучения курса алгебры и начал анализа в 10-11 классах является систематическое изучение функций, раскрытие прикладного значения общих методов математики, связанных с исследованием функций.
Выбрав тему реферата «Исследование функции с помощью производной» я поставила следующие задачи:
-
систематизировать свои знания
о функции, как важнейшей
-
усовершенствовать свое умение
в применении
Развитие функциональных представлений в курсе изучения алгебры и начал анализа на старшей ступени обучения помогает старшеклассникам получить наглядные представления о непрерывности и разрывах функций, узнать о непрерывности любой элементарной функции на области ее применения, научиться строить их графики и обобщить сведения об основных элементарных функциях и осознать их роль в изучении явлений реальной действительности, в человеческой практики.
Работа над содержанием темы «Исследование функций с помощью производной» повысит уровень моей математической подготовки, позволит решать задачи более высокой сложности по сравнению с обязательным курсом.
Глава I. Развитие понятия функции.
Принципиально новая часть курса алгебры посвящена изучению начал анализа. Математический анализ – ветвь математики, оформившаяся в XVIII столетии и включающая в себя две основные части: дифференциальное и интегральное исчисления. Анализ возник благодаря усилиям многих математиков и сыграл громадную роль в развитии естествознания – появился мощный, достаточно универсальный метод исследования функций, возникающих при решении разнообразных прикладных задач. Знакомство с начальными понятиями и методами анализа – одна из важнейших целей курса.
Начиная с XVIII века одним из важнейших понятий является понятие функции. Оно сыграло и поныне играет большую роль в познании реального мира.
Необходимые предпосылки к возникновению понятия функции были созданы, когда возникла аналитическая геометрия, характеризующаяся активным привлечением алгебры к решению геометрических задач.
Идея функциональной зависимости возникла в глубокой древности. Она содержится уже в первых математически выраженных соотношениях между величинами, в первых правилах действий над числами, в первых формулах для нахождения площади и объема тех или иных фигур и геометрических тел.
Однако
явное и вполне сознательное применение
понятия функции и
Четкого представления понятия функции в XVII веке еще не было, однако путь к первому такому определению проложил Декарт. Постепенно понятие функции стало отождествляться с понятием аналитического выражения – формулы.
Явное определение функции было впервые дано в 1718 году Иоганном Бернулли : «Функцией переменной величины называют количество, образованное каким угодно способом из этой переменной величины и постоянных».
Леонард Эйлер во «Введении в анализ бесконечных» (1748) примыкает к определению своего учителя И.Бернулли, несколько уточняя его. Правда, он не всегда придерживался вышеуказанного определения. Эйлер придает более широкий смысл функции, понимая ее как кривую, начертанную «свободным влечением руки».
В «Дифференциальном исчислении», вышедшим в свет в 1755 году, Эйлер дает общее определение функции: «Когда некоторые количества зависят от других таким образом, что при изменении последних и сами они подвергаются изменению, то первые называются функциями вторых».
Большой вклад в решение споров внес Жан Батист Жозеф Фурье, который впервые привел примеры функций, которые заданы на различных участках различными аналитическими выражениями.
Во второй половине XIX века понятие функции формулируется следующим образом: если каждому элементу х множества А поставлен в соответствие некоторый определенный элемент у множества В, то говорят, что на множестве А задана функция y=f(x), или что множество А отображено на множество В.
Общее понятие функции применимо, конечно, не только к величинам и числам, но и к другим математическим объектам, например, к геометрическим фигурам.
Это
общее определение функции
Дирак
ввел так называемую дельта-функцию,
которая выходила далеко за рамки
классического определения
Сергей Львович Соболев первым рассмотрел частный случай обобщенной функции, включающей и дельта-функцию, и применил созданную теорию к решению ряда задач математической физики.
Важный вклад в развитие теории обобщенных функций внесли ученики и последователи Л.Шварца – И.М.Гельфанд, Г.Е.Шилов и другие.
Краткий обзор развития понятия функции приводит к мысли о том, что эволюция еще далеко не закончена и, вероятно, никогда не закончится, кА никогда не закончится и эволюция математики в целом.
Глава II. Основные свойства функции.
2.1. Определение функции и графика функции. Область определения и область значений функции. Нули функции.
Умение изображать геометрически функциональные зависимости, заданные формулами, особенно важно для успешного усвоения курса высшей математики.
Как известно, функциональной зависимостью называют закон, по которому каждому значению величины х из некоторого множества чисел, называемого областью определения функции, ставится в соответствие одно вполне определенное значение величины у; совокупность значений, которые принимает зависимая переменная у, называется областью изменения функции.
Независимую переменную х называют также аргументом функции. Число у, соответствующее числу х, называют значением функции f в точке х и обозначают f(x).
Функцию можно задать тремя способами: аналитический, табличный, графический.
Аналитический – с помощью формул.
Табличный – с помощью таблиц, где можно указать значения функции, однако лишь для конечного набора значений аргумента.
Графический способ задания функции очень удобен: он дает возможность наглядно представить свойства функции.
Графиком функции f называют множество всех точек (х;у) координатной плоскости, где y=f(x), а х «пробегает» всю область определения функции f.
Пример 1. Найти область определения функции y=lg (2x-3)
y=lg(2x-3)
D(y): 2x-3>0
2x>3
x>1,5
Ответ: D(y)=(1,5; +∞ ).
Одним из понятий для исследования функции является нули функции.
Нули функции – это точки, в которых функция принимает значение нуля.
Пример 2. Найти нули функции y=x2-5x.
y=x2-5x
D(y)=R
По
y=0, тогда
x2-5x=0
x(x-5)=0
x=0 или x=5
Ответ: нулями функции являются точки x=0 и х=5.
Пример 3. Найти нули функции y=4x-8
y=4x-8
D(y)=R
По
у=0, тогда
4х-8=0
4x=8
x=2
Ответ: нулями этой функции
является точка х=2.
2.2. Виды функций (четные, нечетные, общего вида, периодические функции).
Рассмотрим функции, области определения которых симметричны относительно начала координат, то есть для любого х из области определения число (-х) также принадлежит области определения. Среди таких функций выделяют четные и нечетные.
Определение: Функция f называется четной, если для любого х из ее области определения f(-x)=f(x).
График
четной функции симметричен
Пример 4. Определить вид функции y=2cos2x.
y=2cos2x, D(y)=R
y(-x)=2cos2(-
Пример 5. Определить вид функции y=x4-2x2+2.
y=x4-2x2+2, D(y)=R.
y(-x)=(-x)4-
Определение: Функция f называется нечетной, если для любого х из ее области определения f(-x)=-f(x).
Информация о работе Исследование функции с помощью производной