Автор работы: Пользователь скрыл имя, 30 Января 2011 в 20:35, курсовая работа
Уравнение называется обыкновенным дифференциальным n-го порядка, если F определена и непрерывна в некоторой области и, во всяком случае, зависит от . Его решением является любая функция u(x), которая этому уравнению удовлетворяет при всех x в определённом конечном или бесконечном интервале. Дифференциальное уравнение, разрешенное относительно старшей производной имеет вид
Введение 3
1.Постановка задачи 5
2.Обзор существующих методов решения задачи 6 2.1.Метод Рунге-Кутта четвертого порядка для решения
уравнения первого порядка 6
2.2.Задача Коши 6
2.3.Метод Булирша- Штера с использованием
рациональной экстраполяции для системы уравнений 7
2.4 Метод Адамса 8
2.5. Метод Эйлера 9
3. Описание алгоритмов решения задания 13
3.1. Описание переменных 13
3.2. Блок- схема главного модуля 14
3.3. Описание алгоритма главной программы 14
3.4. Блок-схема функции “func” 15
3.5. Описание блок- схемы функции “func” 15
4. Описание программного обеспечения 16
4.1. Описание операционной системы 16
4.2. Описание языка программирования 18
4.3. Описание программы 19
5. Контрольный пример 21
6.Анализ полученных результатов 22
Список литературы 24
Приложение 25
В С++ нет типов данных высокого уровня и нет первичных операций высокого уровня. В нем нет, например, матричного типа с операцией обращения или типа строка с операцией конкатенации. Если пользователю понадобятся подобные типы, их можно определить в самом языке. По сути дела, основное, чем занимается программирование на С++ - это определение универсальных и специально-прикладных типов. Хорошо разработанный тип, определяемый пользователем, отличается от встроенного типа только способом определения, но не способом использования.
Реализация С++ очень легко переносима. Однако есть полные основания использовать С++ в среде, где имеется гораздо более существенная поддержка. Такие средства, как динамическая загрузка, пошаговая трансляция и база данных определений типов могут с пользой применяться без воздействия на язык.
Типы
и средства сокрытия данных в С++
опираются на проводимый во время
компиляции анализ программ с целью
предотвращения случайного искажения
данных. Они не обеспечивают секретности
или защиты от умышленного нарушения
правил. Однако эти средства можно использовать
без ограничений, что не приводит к дополнительным
расходам времени на выполнение или
пространства памяти.
Компилятор
Microsoft C++ и среда разработки Microsoft Visual Studio
В качестве компилятора для разработки приложения был выбран Microsoft C++ по следующим причинам:
4.3 Описание программы
Разработанное приложение поставляется в виде 2-ух файлов:
Для выполнения исполняемого файла необходима одна из ниже перечисленных операционных систем:
Программа не требует
Исходный
код приложения может быть откомпилирован
в любом ANSI или POSIX совместимом компиляторе
С++ для получения выполнимой программы.
Для успешной компиляции требуется наличие
стандартной библиотеки «iostream».
5. Контрольный пример
Данный метод протестирован на контрольном примере и реализован с помощью языка программирования С++.
В результате вычислений контрольного примера вида y’=2x+y с интервалом [0,1],
количеством шагов равному 5 и начальным условием у равным 1, с помощью программы, получились следующие результаты:
Как видно, при вычислении программа на первом шаге берёт начальные значения для вычисления, а на последующих берёт значения полученные с предыдущих шагов. Можно сделать вывод, что точность вычисления данного метода зависит от количества выбранных шагов: чем больше шагов, тем меньше фиксированное приращение , а следовательно она более точно вычисляет значение всего интервала.
По работе
программы стало видно, что с
её использованием намного упростилась
работа пользователя. Пользователь
просто вводит интервал на котором должен
вычисляться пример, количество шагов
и начальное значения и программа выдаёт
уже готовое решение данного примера.
6.Анализ полученных результатов.
По результатам
программы можно составить
Ручной способ вычисления | Программный способ вычисления | ||
Х | Y | X | Y |
0 | 0,82 | 0 | 0,82 |
0,2 | 0,75 | 0,2 | 0,7516 |
0,4 | 0,77 | 0,4 | 0,770248 |
0,6 | 0,85 | 0,6 | 0,856793 |
0,8 | 0,99 | 0,8 | 0,996299 |
Из приведенного сравнения можно сделать вывод, что один результат отличается от другого тем, что в примере, решенном программным способом ответ вычисляется с наибольшей точностью, чем при ручном способе. Это может быть связано с тем, что в ручном способе результат округляется для удобства вычисления примера.
Решение дифференциальных уравнений методом Эйлера можно также отобразить в графическом виде:
Рис.3.Графическое изображение
Как видно из рис.3 графиком решения уравнения является кривая , форма которой зависит от количества разбиений интервала.
По результатам выполненной
Список литературы.
Освой самостоятельно С++ за 21 день, 4-е издание.:Пер с англ.-М.: Издательский дом «Вильямс», 2003.-832с.
Turbo Pascal 7.0 – К.: ВЕК+, М.: Бином Универсал, 1998. – 496 с.
10. Высшая математика: Справ. материалы: Книга для учащихся .- М.:
Просвещение, 1988.-416 с.: ил.
Приложение.
Листинг программы.
#include<iostream>
using namespace std;
void func(double& Xi, double& Yi,double kx, double ky, double h);
int main()
{
double h,Xi,Yi,Xkon,kx,ky;
int n;
cout<<"\t"<<"\t"<<"*****
cout<<"\t"<<"\t"<<"*
cout<<"\t"<<"\t"<<"*
cout<<"\t"<<"\t"<<"*****
cout<<endl;
cout<<"Vvedite nachaloe znachenie intervala [a,b]=";
cin>>Xi;
cout<<"Vvedite konechoe znachenie intervala [a,b]=";
cin>>Xkon;
cout<<"Vvedite chislo shagov=";
cin>>n;
h=(Xkon- Xi)/n;
cout<<endl;
cout<<"Vvedite nachalnoe uslovie y=";
cin>>Yi;
cout<<"Vvedite koefitsient pri x=";
cin>>kx;
cout<<"Vvedite koefitsient pri y=";
cin>>ky;
cout<<"|Interval|Chislo shagov|Shag prirasheniya|Nacalnoe Y|Uravnenie vida:| "<<"\n";
cout<<"|--------|-------
cout<<"|"<<"["<<Xi<<","<
cout<<endl;
cout<<endl;
for (int i=1;i<=n;i++)
{
func(Xi,Yi,kx,ky,
cout<<"\n";
}
return 0;
}
void func(double& Xi, double& Yi, double kx, double ky, double h)
{
double
f1,Yprom,a,Xprom;
f1=(kx*Xi)+(ky*Yi);
Yprom=Yi+f1*(h/2);
Xprom=Xi+h/2;
a=kx*Xprom-Yprom;
Yi=Yi+a*h;
cout<<"\t"<<"\t"<<"Interval x="<<Xi<<"\t"<<" Resultat y="<<Yi;
Xi=Xi+h;
}