Автор работы: Пользователь скрыл имя, 29 Июля 2015 в 17:43, контрольная работа
На протяжении всей истории человечество овладело сначала веществом, затем энергией и, наконец, информацией. На заре цивилизации человеку хватало элементарных знаний и первобытных навыков, но постепенно объем информации увеличивался и люди почувствовали недостаток индивидуальных знаний. Потребовалось научиться обобщать знания и опыт, которые способствовали правильной обработке информации и принятию необходимых решений. Усложнение индустриального производства, социальной, экономической и политической жизни, изменение динамики процессов во всех сферах деятельности человека привели, с одной стороны, к росту потребностей в знаниях, а с другой - к созданию новых средств и способов удовлетворения этих потребностей
Введение
1. Основные этапы развития вычислительной техники
2. Эпоха аналоговых вычислительных машин
Заключение
МИНИСТЕРСТВО КУЛЬТУРЫ РОССИЙСКОЙ ФЕДЕРАЦИИ
Рязанский заочный институт (филиал)
федерального государственного бюджетного образовательного учреждения высшего профессионального образования
«Московский государственный университет культуры и искусств»
Факультет организации и управления
Кафедра социально-культурной деятельности
КОНТРОЛЬНАЯ РАБОТА
По дисциплине: «Основы информационной культуры и информатики»
Тема: «Этапы развития вычислительной техники – эпоха аналоговых вычислительных машин»
Преподаватель: ___________________
Рязань, 2014 г.
План
Введение
1. Основные этапы развития вычислительной техники
2. Эпоха аналоговых вычислительных машин
Заключение
Введение
На протяжении всей истории человечество овладело сначала веществом, затем энергией и, наконец, информацией. На заре цивилизации человеку хватало элементарных знаний и первобытных навыков, но постепенно объем информации увеличивался и люди почувствовали недостаток индивидуальных знаний. Потребовалось научиться обобщать знания и опыт, которые способствовали правильной обработке информации и принятию необходимых решений. Усложнение индустриального производства, социальной, экономической и политической жизни, изменение динамики процессов во всех сферах деятельности человека привели, с одной стороны, к росту потребностей в знаниях, а с другой - к созданию новых средств и способов удовлетворения этих потребностей. В современном обществе к общей культуре человека добавилась еще одна категория – информационная. Основную роль в информационном обществе играет система распространения, хранения и обработки информации, образуя информационную среду, которая может обеспечить любому человеку доступ ко всей информации. В XXI веке образованный человек – это человек, хорошо владеющий информационными технологиями. Ведь деятельность людей все в большей степени зависит от их информированности, способности эффективно использовать информацию. Для свободной ориентации в информационных потоках современный специалист любого профиля должен уметь получать, обрабатывать и использовать информацию с помощью компьютеров, телекоммуникаций и других средств связи. Об информации начинают говорить как о стратегическом ресурсе общества, как о ресурсе, определяющем уровень развития государства. Уже сейчас при приеме на работу соискателям предъявляются требования по владению персональным компьютером и основными прикладными программами. Можно сделать вывод, что в современных условиях информационные технологии становятся эффективным инструментом совершенствования управления предприятием, особенно в таких областях управленческой деятельности, как стратегическое управление, управление качеством продукции и услуг, маркетинг, делопроизводство, управление персоналом. Особую актуальность вопросы компьютерной информатики получают в последние годы в связи с широким использованием глобальных информационно-вычислительных сетей, в качестве наиболее известной из которых является Internet. Цель данной работы: изучив доступные источники информации, выяснить и проанализировать основные этапы и тенденции в развитии вычислительной техники, а также познакомиться с эпохой аналоговых компьютеров, ведь знание истории всегда помогает понимать новое, тем более при современном темпе развития информационных технологий.
Основные этапы развития вычислительной техники
Выделяют четыре этапа развития вычислительной техники:
Домеханический (ручной)— с 40—30-го тысячелетия до н. э.
Механический — с середины XVII в.
Электромеханический — с 90-х годов XIX в.
Электронный — со второй половины 40-х годов XX в.
Ручной период автоматизации вычислений начался на заре человеческой цивилизации и базировался нa использовании частей тела, в первую очередь пальцев рук и ног. Даже ряд известных средневековых математиков рекомендовали в качестве вспомогательного средства именно пальцевый счет, допускающий довольно эффективные системы счета. Фиксация результатов счета производилась различными способами: нанесение насечек, счетные палочки, узелки и др. Например, у народов доколумбовой Америки был весьма развит узелковый счет. Более того, система узелков выполняла также роль своего рода хроник и летописей, имея достаточно сложную структуру. Однако, использование ее требовало хорошей тренировки памяти. Счет с помощью группировки и перекладывания предметов явился предшественником счета на абаке - наиболее развитом счетном приборе древности, сохранившимся до наших дней в виде различного типа счетов. Абак явился первым развитым счетным прибором в истории человечества, основным отличием которого от предыдущих способов вычислений было выполнение вычислений по разрядам. Таким образом, использование абака уже предполагает наличие некоторой позиционной системы счисления, например, десятичной, троичной, пятеричной и др. Хорошо приспособленный к выполнению операций сложения и вычитания, абак оказался недостаточно эффективным прибором для выполнения операций умножения и деления. Поэтому открытие логарифмов и логарифмических таблиц Дж. Непером, в начале 17 в., позволивших заменять умножение и деление соответственно сложением и вычитанием, явилось следующим крупным шагом в развитии вычислительных систем ручного этапа. Впоследствии появляется целый ряд модификаций логарифмических таблиц. Однако, в практической работе использование логарифмических таблиц имеет ряд неудобств, поэтому Дж. Непер в качестве альтернативного метода предложил специальные счетные палочки (названные впоследствии палочками Непера), позволявшие производить операции умножения и деления непосредственно над исходными числами. В основу данного метода Непер положил способ умножения решеткой. Введенные Дж. Непером логарифмы оказали революционизирующее влияние на все последующее развитие счета, чему в значительной степени способствовало появление целого ряда логарифмических таблиц вычисленных как самим Непером, так и рядом (других известных в то время вычислителей (X. Бриггс, И. Кепплер, Э. Вингайт, А. Влах). Сама идея логарифмов в алгебраической интерпретации базируется на сопоставлении двух типов последовательностей: арифметической и геометрической. Известно, что любое число в арифметической последовательности является логарифмом соответствующего числа в геометрической последовательности по некоторому основанию. Логарифмы послужили основой создания замечательного вычислительного инструмента - логарифмической линейки, более 360 лет служащего инженерно-техническим работникам всего мира. Прообразом современной логарифмической линейки считается логарифмическая шкала Э. Гюнтера, использованная У. Отредом и Р. Деламейном при создании первых логарифмических линеек. Усилиями целого ряда исследователей логарифмическая линейка постоянно совершенствовалась и видом, наиболее близким к современному, она обязана 19-летнему французскому офицеру А. Манхейму. Позволяя производить вычисления с 2-4 точными десятичными цифрами, логарифмическая линейка и счеты еще исправно служат человеку в различного рода расчетах, являясь венцом вычислительных инструментов ручного этапа развития вычислительной техники.
Механический этап развития вычислительной техники в 17 в. характеризуется как время создания вычислительных устройств и приборов, использующих механический принцип вычислений. Такие устройства строились на механических элементах и обеспечивали автоматический перенос старшего разряда. Первая механическая машина была описана в 1623 г. В. Шиккардом, реализована в единственном экземпляре и предназначалась для выполнения четырех арифметических операций над 6-разрядными числами Машина Шиккарда состояла из трех независимых устройств: суммирующего, множительного и записи чисел Сложение производилось последовательным вводом слагаемых посредством наборных дисков, а вычитание - последовательным вводом уменьшаемого и вычитаемого. Вводимые числа и результат сложения / вычитания отображались в окошках считывания. Для выполнения операции умножения использовалась идея умножения решеткой, рассмотренная выше. Третья часть машины использовалась для записи числа длиною более 6 разрядов. В машине Б. Паскаля использовалась более сложная схема переноса старших разрядов, в дальнейшем редко используемая; но построенная в 1642 г. первая действующая модель машины, а затем серия из 50 машин способствовали достаточно широкой известности изобретения и формированию общественного мнения о возможности автоматизации умственного труда. До нашего времени дошло только 8 машин Паскаля, из которых одна является 10-разрядной. Именно машина Паскаля положила начало механического этапа развития вычислительной техники. В 17-18 веках предлагался целый ряд различного типа и конструкции суммирующих устройств и арифмометров, пока в 19 в; растущий объем вычислительных работ не определил устойчивого спроса на механические счетные устройства и не способствовал их серийному производству на коммерческой основе. В начале 1836 г. Бэбидж уже четко представлял себе основную конструкцию машины, а в 1837 г. он достаточно подробно описывает свой проект. Аналитическая машина состояла из следующих четырех основных частей: (1) блок хранения исходных, промежуточных данных и результатов вычислений. Он состоял из набора зубчатых колес, идентифицирующих цифры подобно арифмометру. Колеса объединялись в регистры для хранения многоразрядных десятичных чисел. Этот блок Бэбидж называл складом [в современной терминологии - это оперативная память ЭВМ] и определял его емкость в 1000 50-разрядных десятичных чисел; (2) блок обработки чисел из склада, названный мельницей [в современной терминологии - это арифметическое устройство (АУ)]. Быстродействие данного блока Бэбидж оценивал как; сложение/вычитание - 1 с.; умножение (двух 50-разрядных чисел) и деление (100-разрядное число на 50-разрядное) - 1 мин.; организация блока была аналогична первому блоку; (3) блок управления последовательностью вычислений [в современной терминологии - это устройство управления (УУ)]; проектировалось на основе двух: жаккардовых механизмов» описанных ниже; (4) блок ввода исходных данных и печати результатов (в современной терминологии - это устройство ввода/вывода (УВВ)]. Для функционирования аналитической машины была необходима программа, первый пример которой был написан Адой Лавлейс (1843 г.). В 1842 г. на итальянском языке была опубликована статья Л.Ф. Менабреа по аналитической машине Бэбиджа, переводом которой на английский язык и занялась А. Лавлейс. В августе 1843 г. вышел перевод статьи Менебреа, но с примечаниями переводчика, которые не только в 2.5 раза превзошли по объему оригинал, но и, по сути дела, заложили основы программирования на ЭВМ за столетие до начала действительного развитая этого базового раздела информатики.
Электромеханический этап развития вычислительной техники явился наименее продолжительным и охватывает всего около 60 лет - от первого табулятора Г. Холлерита (1887 г ) до первой ЭВМ ENIAC (1945 г.) Предпосылками создания проектов данного этапа явились как необходимость проведения массовых расчетов (экономика, статистика, управление и планирование, и др.), так и развитие прикладной электротехники (электропривод и электромеханические реле) позволившие создавать электромеханические вычислительные устройства. Если вернуться к предыдущим этапам развития вычислительной техники, то можно заметить, что каждый этап характеризуется созданием технических средств нового типа обладающих более высокой производительностью и более широкой сферой применения, чем предыдущие этапы. Классическим типом средств электромеханического этапа был счетно-аналитический комплекс, предназначенный для обработки информации на перфокарточных носителях.
Первый счетно-аналитический
комплекс был создан в США Г. Холлеритом
в 1887 г и состоял из ручного перфоратора
сортировочной машины и табулятора. Используя
идеи Жаккарда и Бэбиджа (или переоткрыв
их заново), Г. Холлерит в качестве информационного
носителя использовал перфокарты (хотя
им рассматривался и перфо-ленточный вариант),
все остальные компоненты комплекса носили
оригинальный характер. Основным назначением
комплекса являлась статистическая обработка
перфокарт. В первых моделях комплекса
использовалась ручная сортировка перфокарт
(в 1890 г. замененная электрической), а табулятор
был создан на основе простейших электромеханических
реле. Первое испытание комплекса было
произведено в 1887 г. в Балтиморе (США) при
составлении таблиц смертности населения,
основные же испытания уже модифицированного
комплекса производились в 1889 г. на примере
обработки итогов переписи населения
в четырех районах Сент-Луиса (США). Основные
испытание прошли весьма успешно и табулятор
Холлерита очень быстро получил международное
признание и использовался для переписи
населения в России (1897 г.), США, Австро-Венгрии
(1890) и Канаде (1891 г.)
Эпоха аналоговых вычислительных машин
Аналоговый компьютер - это вычислительная машина, представляющая числовые данные с помощью аналоговых физических переменных, таких, как скорость, длина или напряжение, в отличие от цифрового представления. Является противоположностью цифровым компьютерам. Каждой элементарной математической операции над машинными величинами, как правило, соответствует некоторый физический закон, устанавливающий математические зависимости между физическими величинами на выходе и входе решающего элемента (например, законы Ома и Кирхгофа для электрических цепей, выражение для эффекта Холла, лоренцовой силы и т. д.). Особенности представления исходных величин и построения отдельных решающих элементов в значительной мере предопределяют сравнительно большую скорость работы АВМ, простоту программирования и набора задач, ограничивая, однако, область применения и точность получаемого результата. АВМ отличается также малой универсальностью (алгоритмическая ограниченность) — при переходе от решения задач одного класса к другому требуется изменять структуру машины и число решающих элементов. К первому аналоговому вычислительному устройству относят обычную логарифмическую линейку. Графики и номограммы — следующая разновидность аналоговых вычислительных устройств — для определения функций нескольких переменных; впервые встречаются в руководствах по навигации в 1791. В 1814 английский учёный Дж. Герман разработал аналоговый прибор — планиметр, предназначенный для определения площади, ограниченной замкнутой кривой на плоскости. Планиметр был усовершенствован в 1854 немецким учёным А. Амслером. Его интегрирующий прибор с катящимся колесом привёл позднее к изобретению английским физиком Дж. Томсоном фрикционного интегратора. В 1876 другой английский физик У. Томсон применил фрикционный интегратор в проекте гармонического анализатора для анализа и предсказывания высоты приливов в различных портах. Он показал в принципе возможность решения дифференциальных уравнений путём соединения нескольких интеграторов, однако из-за низкого уровня техники того времени идея не была реализована. Первая механическая вычислительная машина для решения дифференциальных уравнений при проектировании кораблей была построена А. Н. Крыловым в 1904. В основу её была положена идея интеграфа — аналогового интегрирующего прибора, разработанного польским математиком Абданк-Абакановичем (1878) для получения интеграла произвольной функции, вычерченной на плоском графике. Дальнейшее развитие механических интегрирующих машин связано с работами американского учёного В. Буша, под руководством которого была создана чисто механическая интегрирующая машина (1931), а затем её электромеханический вариант (1942). В 1936 русский инженер Н. Минорский предложил идею электродинамического аналога. Толчок развитию современных АВМ постоянного тока дала разработка Б. Расселом (1942—44, США) решающего усилителя. Большое значение имели работы советского математика С. А. Гершгорина (1927), заложившие основы построения сеточных моделей. В 1936 в СССР под руководством И. С. Брука были построены механический интегратор и электрический расчётный стол для определения стационарных режимов энергетических систем. В 40-х гг. была начата разработка электромеханического ПУАЗО на переменном токе и первых электронных ламповых интеграторов (Л. И. Гутенмахер). Работы, проведённые под руководством Гутенмахера (1945—46), привели к созданию первых электронных аналоговых машин с повторением решения. В 1949 в СССР под руководством В. Б. Ушакова, В. А. Трапезникова, В. А. Котельникова, С. А. Лебедева был построен ряд АВМ на постоянном токе. Эти работы положили начало развитию современной аналоговой вычислительной техники в СССР.
Информация о работе Этапы развития вычислительной техники – эпоха аналоговых вычислительных машин