Защита информации. Криптография

Автор работы: Пользователь скрыл имя, 28 Февраля 2011 в 19:21, курсовая работа

Описание работы

Задача криптографии, т.е. тайная передача, возникает только для информации, которая нуждается в защите. В таких случаях говорят, что информация содержит тайну или является защищаемой, приватной, конфиденциальной, секретной. Для наиболее типичных, часто встречающихся ситуаций такого типа введены даже специальные понятия:

•государственная тайна;
•военная тайна;
•коммерческая тайна;
•юридическая тайна;
•врачебная тайна и т. д.

Содержание работы

ВВЕДЕНИЕ. 3
1 КРИПТОГРАФИЧЕСКИЕ СРЕДСТВА ЗАЩИТЫ. 8
1.1 Принципы работы Криптосистемы. 8
1.2 Управление криптографическими ключами. 11
1.2 Алгоритмы шифрования 13
2.2.1 Симметричные алгоритмы 13
2.2.2 Асимметричные алгоритмы 16
1.3 Хэш-функции 17
1.4 Механизмы аутентификации 17
1.5 Электронные подписи и временные метки 18
1.6. Стойкость шифра. 19
2 КВАНТОВАЯ КРИПТОГРАФИЯ. 22
2.1. Природа секретности квантового канала связи. 23
2.2.Принципы работы ККС и первая экспериментальная реализация. 23
2.3.Современное состояние работ по созданию ККС 28
2.4.Протоколы для квантово-криптографических систем распределения ключевой информации. 30
ЗАКЛЮЧЕНИЕ. 34
ЛИТЕРАТУРА. 37

Файлы: 1 файл

Защита информации.doc

— 219.00 Кб (Скачать файл)

      При переходе от сигналов, где информация кодируется импульсами, содержащими  тысячи фотонов, к сигналам, где среднее число фотонов, приходящихся на один импульс, много меньше единицы (порядка 0,1), вступают в действие законы квантовой физики. Именно на использовании этих законов в сочетании с процедурами классической криптографии основана природа секретности ККС. Здесь непосредственно применяется принцип неопределенности Гейзенберга, согласно которому попытка произвести измерения в квантовой системе искажает ее состояние, и полученная в результате такого измерения информация не полностью соответствует состоянию до начала измерений. Попытка перехвата информации из квантового канала связи неизбежно приводит к внесению в него помех, обнаруживаемых легальными пользователями. КК используют этот факт для обеспечения возможности двум сторонам, которые ранее не встречались и предварительно не обменивались никакой секретной информацией, осуществлять между собой связь в обстановке полной секретности без боязни быть подслушанными.

2.2.Принципы работы ККС и первая экспериментальная реализация. 

      В 1984 году Ч. Беннетт (фирма IBM) и Ж. Брассард (Монреальский университет) предложили простую схему защищенного квантового распределения ключей шифрования. Эта схема использует квантовый канал, по которому пользователи А и Б обмениваются сообщениями, передавая их в виде поляризованных фотонов. Подслушивающий их злоумышленник П может попытаться производить измерения этих фотонов, но он не может сделать это, не внося в них искажения. А и Б используют открытый канал для обсуждения и сравнения сигналов, передаваемых по квантовому каналу, проверяя их на возможность перехвата. Если при этом они не выявят искажений в процессе свыязи, они могут извлечь из полученных данных информацию, которая надежно распределена, случайна и секретна, несмотря на все технические ухищрения и вычислительные возможности, которыми располагает П.

      Схема работает следующим образом. Сначала  А генерирует и посылает Б последовательность фотонов, поляризация которых выбрана  случайным образом и может  составлять 0°, 45°, 90° или 135°. Б принимает  эти фотоны и для каждого из них случайным образом решает, замерять ли его поляризацию как перпендикулярную или диагональную. Затем по открытому каналу Б объявляет для каждого фотона, какой тип измерений им был сделан (перпендикулярный или диагональный), но не сообщает результат этих измерений, например, 0°, 45°, 90° или 135°. По этому же открытому каналу А сообщает ему, правильный ли вид измерений был выбран для каждого фотона. Затем А и Б отбрасывают все случаи, когда Б сделал неправильные замеры или когда произошли сбои в его детекторах. Если квантовый канал не перехватывался, оставшиеся виды поляризаций, которые затем переводятся в биты, составят в совокупности поделенную между А и Б секретную информацию.

      Следующее испытание на возможность перехвата  может производиться пользователями А и Б по открытому каналу путем сравнения и отбрасывания случайно выбранных ими подмножеств полученных данных. Если такое сравнение выявит наличие перехвата, А и Б отбрасывают все свои данные и начинают с новой группы фотонов. В противном случае они оставляют прежнюю поляризацию, о которой не упоминалось по открытому каналу, в качестве секретной информации о битах, известных только им, принимая фотоны с горизонтальной или 45-градусной поляризацией за двоичный ноль, а с вертикальной или 135-градусной поляризацией - за двоичную единицу.

      Согласно  принципу неопределенности, П не может  замерить как прямоугольную, так  и диагональную поляризации одного и того же фотона. Даже если он для  какого-либо фотона произведет неправильное измерение и перешлет Б этот фотон в соответствии с результатом своих измерений, это неизбежно внесет случайность в первоначальную поляризацию, с которой он посылался А. В результате появятся ошибки в одной четвертой части битов, составляющих данные Б, которые были подвергнуты перехвату.

      Более эффективной проверкой для А  и Б является проверка на четность, осуществляемая по открытому каналу. Например, А может сообщить: "Я  просмотрел 1-й, 4-й, 5-й, 8-й, ... и 998-й из моих 1000 битов данных, и они содержат четное число единиц. Тогда Б подсчитывает число единиц на тех же самых позициях. Можно показать, что если данные у Б и А отличаются, проверка на четность случайного подмножества этих данных выявит этот факт с вероятностью 0,5 независимо от числа и местоположения ошибок. Достаточно повторить такой тест 20 раз с 20 различными случайными подмножествами, чтобы сделать вероятность необнаруженной ошибки очень малой.

      А и Б могут также использовать для коррекции ошибок коды, исправляющие ошибки, обсуждая результаты кодирования  по открытому каналу. Однако при этом часть информации может попасть к П. Тем не менее А и Б, зная интенсивность вспышек света и количество обнаруженных и исправленных ошибок, могут оценить количество информации, попадающей к П.

      Знание  П значительной части ключа может во многих случаях привести к вскрытию им сообщения. Беннетт и Брассард совместно с Ж. М. Робертом разработали математический метод, называемый усилением секретности. Он состоит в том, что при обсуждении по открытому каналу из части секретной битовой последовательности пользователи выделяют некоторое количество особо секретных данных, из которых перехватчик с большой вероятностью не в состоянии узнать даже значения одного бита. В частности, было предложено использовать некоторую функцию уменьшения длины (функцию хэширования). После применения этой функции пользователями А и Б к имеющимся у них последовательностям битов частичная информация перехватчика о массиве их данных преобразуется практически в отсутствие какой-либо информации о выходных данных функции.

      Например, если входная последовательность состоит  из 1000 бит, из которых П известно более 200, А и Б могут выделить около 800 особо секретных битов  в качестве выходной последовательности. В качестве таковых они могут  взять любое множество таких  битов, которые с наибольшей достоверностью были идентичны при проведении ими измерений (при этом им следует сохранять в тайне это соответствие, а не обсуждать его по открытому каналу). Так, например, А и Б могут определить каждый выходной бит функции усиления секретности как четность независимого публично оговоренного случайного набора битов из полного массива.

      Отметим, что в качестве открытого канала могут использоваться как обычные  линии телефонной и радиосвязи или  локальные вычислительные сети, так  и волоконно-оптическая линия связи в стандартном режиме работы.

      В 1989 году в Исследовательском центре фирмы IBM был построен первый прототип КОКС, содержащий передающий модуль пользователя А на одном конце и приемный модуль Б на другом. Эта система  размещалась на оптической скамье длиной около 1 м в светонепроницаемом кожухе. Квантовый канал представлял собой свободное воздушное пространство длиной около 30 см. Во время функционирования макет управлялся от ПЭВМ, которая содержала программное представление пользователей А, Б и, кроме того, возможного злоумышленника П.

      Левая сторона передающего модуля А  состоит из диода, излучающего зеленый  свет, линзы, булавочного отверстия  и фильтров, которые обеспечивают пучок горизонтально поляризованного  света. Получались импульсы с интенсивностью 0,1 фотона на импульс. Такая низкая интенсивность принята для сведения к минимуму возможности перехватчика разделить отдельный импульс на два или более фотонов. Затем располагаются электрооптические приборы, известные как камеры Поккельса, которые используются для изменения первоначальной горизонтальной поляризации в любое из четырех стандартных поляризационных состояний, выбором которых управляет пользователь А.

      На  противоположном конце в приемнике  Б располагается аналогичная  камера Поккельса, позволяющая ему изменять тип поляризации, которую приемник будет измерять. После прохождения через камеру Поккельса пучок света расщепляется кальцитовой призмой на два перпендикулярно поляризованных пучка, которые направляются на два фотоэлектронных умножителя с целью выделения отдельных фотонов. 

   2.3.Современное состояние работ по созданию ККС.

       
За десять лет, прошедших с момента создания первого прототипа КОКС, достигнут  огромный прогресс. Сейчас квантовое  распределение ключей по ВОЛС является возможным уже на расстояния в десятки километров.

      Работы  в области квантовой криптографии ведутся во многих странах. В России, например, этими вопросами активно  занимаются в Государственном университете телекоммуникаций (Санкт-Петербург). В  США в Лос-Аламосской национальной лаборатории создана линия связи общей длиной 48 км, в которой осуществляется распределение ключей со скоростью в несколько десятков Кбит/с, а в университете Дж. Хопкинса реализована локальная вычислительная сеть с квантовым каналом связи длиной 1 км, в которой достигнута скорость передачи 5 кбит/с. В Великобритании, в Оксфордском университете, реализован целый ряд макетов квантово-криптографических систем с использованием различных методов модуляции и детектирования оптических сигналов, а в лаборатории фирмы British Telecom получена наибольшая длина КОКС – 30 км при скорости передачи порядка 10 кбит/с. В 1997 году была доказана возможность существенного повышения скоростей передачи - до уровня 1 Мбит/с и более.

      ККС поначалу использовались для связи отдельных пар пользователей, но практические применения требуют связей со многими пользователями. И не так давно были предложены реализации ККС для оптических сетей связи различной топологии.

      Рассмотрим, как КК может применяться к  случаю пассивной оптической сети, содержащей центральный сетевой контроллер А, связанный посредством пассивного оптического светоделителя со множеством сетевых пользователей (Бi). В этой схеме просто используется квантовое поведение оптического светоделителя. Одиночный фотон в светоделителе не может разделяться, а, напротив, направляется по одному (и только одному) из путей. Выбор пути для каждого отдельного фотона произволен и непредсказуем. Следовательно, если стандартный протокол квантовой передачи применяется в сети со светоделителями, то каждый пользователь будет обеспечен уникальным произвольно выбранным подмножеством битов. Из последовательности, которая передается в сети, центр А может, выполняя открытое обсуждение после передачи с каждым пользователем по очереди, идентифицировать, какие фотоны были разделены с каждым из них, и создать с каждым секретный и уникальный индивидуальный ключ. Таким образом, сеть может быть надежно защищена, потому что, хотя шифрованная информация передается открыто по сети, А и Бi могут быть уверены, что никакой другой сетевой пользователь или внешний злоумышленник не получил никаких сведений относительно их общего ключа. Эта схема распределения ключей полезна, например, для обеспечения работы пользователей с защищенной базой данных.

      Основные  усилия теперь направлены на то, чтобы сделать использование квантового канала экономически эффективным. Большинство схем КОКС требуют постоянной подстройки и управления на каждой стороне канала связи, что удорожает систему. Однако недавно в Женевском университете была предложена реализация КОКС, не требующая никакой подстройки, кроме синхронизации. Экспериментальные результаты подтверждают, что подобные схемы действительно многообещающи для практических реализаций квантового канала. Применение в них так называемых “зеркал Фарадея” приводит к тому, что все световые импульсы проходят одинаковый путь, поэтому, в отличие от обычных схем, не требуется никакой подстройки. Для организации квантового канала необходимо просто подключить приемный и передающий модули в конце ВОЛС, синхронизировать сигналы и начать передачу. Именно поэтому данную систему называют системой Plug and Play ("подключай и работай"). В эксперименте швейцарских исследователей каналом связи являлся подводный кабель длиной 23 км, используемый для передачи данных между Нионом и Женевой. Однако скорости передачи информации, полученные в данной системе, низки для практических приложений, и сейчас ведется доработка схемы, чтобы достичь более конкурентоспособных результатов.

2.4.Протоколы для квантово-криптографических систем распределения ключевой информации.

      Алгоритмическая часть ККС состоит из стека  протоколов, реализация которого позволяет  законным пользователям обеспечить формирование общего ключа при условии  утечки к злоумышленнику не более  заданного количества информации или отказ от данного сеанса при невыполнении этого условия.

      В стек протоколов входят следующие элементы.

  • Протокол первичной квантовой передачи.
  • Протокол исправления ошибок в битовых последовательностях, полученных в результате квантовой передачи.
  • Протокол оценки утечки к злоумышленнику информации о ключе.
  • Протокол усиления секретности и формирования итогового ключа.

      Шаги  первичного протокола квантовой  передачи зависят от типа оптической схемы, использованной для создания квантового оптического канала связи, и вида модуляции квантовых состояний. Пример протокола квантовой передачи для КОКС с модуляцией поляризации фотонов по четырем состояниям был кратко описан выше. После реализации такого протокола пользователи A и Б будут иметь в основном совпадающие последовательности, причем длины этих последовательностей будут близки к половине длины последовательности переданных фотонных импульсов.

Информация о работе Защита информации. Криптография