Криптографические методы защиты информации

Автор работы: Пользователь скрыл имя, 21 Мая 2013 в 21:38, реферат

Описание работы

В настоящее время особо актуальной стала оценка уже используемых криптоалгоритмов. Задача определения эффективности средств защиты зачастую более трудоемкая, чем их разработка, требует наличия специальных знаний и, как правило, более высокой квалификации, чем задача разработки. Это обстоятельства приводят к тому, что на рынке появляется множество средств криптографической защиты информации, про которые никто не может сказать ничего определенного. При этом разработчики держат криптоалгоритм (как показывает практика, часто нестойкий) в секрете. Однако задача точного определения данного криптоалгоритма не может быть гарантированно сложной хотя бы потому, что он известен разработчикам. Кроме того, если нарушитель нашел способ преодоления защиты, то не в его интересах об этом заявлять.

Содержание работы

Введение
Криптография и шифрование
Что такое шифрование
Основные понятия и определения криптографии
Симметричные и асимметричные криптосистемы
Основные современные методы шифрования
3. Алгоритмы шифрования
Алгоритмы замены(подстановки
3.2 Алгоритмы перестановки
3.3 Алгоритмы гаммирования
3.4 Алгоритмы основанные на сложных математических
преобразованиях
3.5 Комбинированные методы шифрования
3.5.1 Криптографический стандарт DES
3.5.2 ГОСТ 28147-89
Выводы
Заключение
Литература

Файлы: 1 файл

Реферат123.doc

— 191.50 Кб (Скачать файл)

DES-алгоритм явился первым примером широкого производства и внедрения технических средств в области защиты информации. Национальное бюро стандартов США проводит проверку аппаратных реализаций  DES-алгоритма,  предложенных фирмами-разработчиками, на специальном тестирующем стенде. Только после положительных результатов проверки производитель получает от Национального бюро стандартов сертификат на право реализации своего продукта. К настоящему времени аттестовано несколько десятков изделий, выполненных на различной элементарной базе.

Достигнута высокая  скорость шифрования. Она составляет в лучших изделиях 45 Мбит/с. Цена некоторых  аппаратных изделий ниже 100 долларов США.

Основные области применения DES-алгоритма:

  1. хранение данных на компьютерах (шифрование файлов, паролей);
  2. аутентификация сообщений (имея сообщение и контрольную группу, несложно убедиться в подлинности сообщения;
  3. электронная система платежей (при операциях с широкой клиентурой и между банками);
  4. Электронный обмен коммерческой информацией( обмен данными между покупателями, продавцом и банкиром защищен от изменений и перехвата.

Позднее появилась модификация  DESa — Triple Des («тройной DES» — так как трижды шифрует информацию «обычным» DESом) свободен от основного недостатка прежнего варианта — короткого ключа; он здесь в два раза длиннее. Но зато, как оказалось, Triple DES унаследовал другие слабые стороны своего предшественника: отсутствие возможности для параллельных вычислений при шифровании и низкую скорость.

 

3.5.2  ГОСТ 28147-89

В 1989 году в СССР был  разработан блочный шифр для использования  в качестве государственного стандарта шифрования данных. Разработка была принята и зарегистрирована как ГОСТ 28147-89. Алгоритм был введен в действие в 1990 году. И хотя масштабы применения этого алгоритма шифрования до сих пор уточняются, начало его внедрения, в частности в банковской системе , уже положено. Алгоритм несколько медлителен, но обладает весьма высокой стойкостью.

В общих чертах ГОСТ 28147 аналогичен DES. Блок-схема алгоритма ГОСТ отличается от блок-схемы DES-алгоритма лишь отсутствием начальной перестановки и число циклов шифрования (32 в ГОСТ против 16 в DES-алгоритме).

Ключ алгоритма ГОСТ — это массив, состоящий из 32-мерных векторов X1, X2,…X8. Цикловой ключ i-го цикла Ki равен Xs,  где ряду значений  i от 1 до 32 соответствует следующий ряд значений s:

1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,8,7,6,5,4,3,2,1.

В шифре ГОСТ используется 256-битовый ключ и объем ключевого  пространства составляет 2256. Ни на одной из существующих в настоящее время или предполагаемых к реализации в недалеком будущем компьютерной системе общего применения нельзя подобрать ключ за время, меньшее многих сотен лет. Российский стандарт проектировался с большим запасом, по стойкости он на много порядков превосходит американский стандарт DES с его реальным размером ключа в 56 бит о и объемом ключевого пространства всего 256( и неудивительно: его ключ длиной 32 байта (256 бит)  вчетверо больше ключа DES. Необходимое же на перебор всех ключей время при этом возрастает не в четыре раза, а в 25632-8=25624, что выливается  уже в астрономические цифры), чего явно недостаточно. В этой связи DES может представлять скорее исследовательский или научный, чем практический интерес.  

 

 

3.6 Выводы

 

В 3 главе были рассмотрены несколько различных  методов шифрования. Алгоритмы 3.1-3.4  в «чистом виде» использовались раньше, а в наши дни они заложены практически в любой, даже самой сложной программе шифрования. Каждый из рассмотренных методов  реализует собственный способ криптографической защиты информации и  имеет собственные достоинства и недостатки, но их общей важнейшей характеристикой является стойкость. Под этим понимается минимальный объем зашифрованного текста, статистическим анализом которого можно вскрыть исходный текст. Таким образом, по стойкости шифра можно определить предельно допустимый объем информации, зашифрованной при использовании одного ключа. При выборе криптографического алгоритма для использования в конкретной разработке его стойкость является одним из определяющих факторов.

Все современные  криптосистемы спроектированы таким  образом, чтобы не было пути вскрыть их более эффективным способом, чем полным перебором по всему ключевому пространству, т.е. по всем возможным значениям ключа. Ясно, что стойкость таких шифров определяется размером используемого в них ключа.

Приведу оценки стойкости рассмотренных выше методов шифрования. Моноалфавитная подстановка является наименее стойким шифром, так как при ее использовании сохраняются все статистические закономерности исходного текста. Уже при длине в 20-30 символов указанные закономерности проявляются в такой степени, что, как правило, позволяет вскрыть исходный текст. Поэтому такое шифрование считается пригодным только для закрывания паролей, коротких сигнальных сообщений и отдельных знаков.

Стойкость простой  полиалфавитной подстановки (из подобных систем была рассмотрена подстановка по таблице Вижинера) оценивается значением 20n, где n — число различных алфавитов используемых для замены. При использовании таблицы Вижинера число различных алфавитов определяется числом букв в ключевом слове. Усложнение полиалфавитной подстановки существенно повышает ее стойкость.

Стойкость гаммирования однозначно определяется длинной периода  гаммы. В настоящее время реальным становится использование бесконечной  гаммы, при использовании которой  теоретически стойкость зашифрованного текста также будет бесконечной.

Можно отметить, что для надежного закрытия больших  массивов информации наиболее пригодны гаммирование и усложненные перестановки и подстановки.

При использовании  комбинированных методов шифрования стойкость шифра равна произведению стойкостей отдельных методов. Поэтому комбинированное шифрование является наиболее надежным способом криптографического закрытия. Именно такой метод был положен в основу работы всех известных в настоящее время шифрующих аппаратов.

Алгоритм DES был утвержден еще долее 20 лет назад, однако за это время компьютеры сделали немыслимый скачок в скорости вычислений, и сейчас не так уж трудно сломать этот алгоритм путем полного перебора всех возможных вариантов ключей (а в DES  используется всего 8-байтный ),что недавно казалось совершенно невозможным.

ГОСТ 28147-89 был  разработан еще спецслужбами Советского Союза, и он моложе DES всего на 10 лет; при разработке в него был заложен такой запас прочности, что данный ГОСТ является актуальным до сих пор.

Рассмотренные значения стойкости шифров являются потенциальными величинами. Они могут  быть реализованы при строгом  соблюдении правил использования криптографических  средств защиты. Основными из этих првил являются: сохранение в тайне  ключей, исключения дублирования(т.е. повторное шифрование одного и того же отрывка текста с использованием тех же ключей) и достаточно частая смена ключей.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.  Заключение

 

Итак, в этой работе был сделан  обзор наиболее распространенных в настоящее время методов криптографической защиты информации и способов ее реализации. Выбор для конкретных систем должен быть основан на глубоком анализе слабых и сильных сторон тех или иных методов защиты. Обоснованный выбор той или иной системы защиты в общем-то должен опираться на какие-то критерии эффективности. К сожалению, до сих пор не разработаны подходящие методики оценки эффективности криптографических систем.

 

Наиболее простой  критерий такой эффективности - вероятность  раскрытия ключа или мощность множества ключей (М). По сути это то же самое, что и криптостойкость. Для ее численной оценки можно использовать также и сложность раскрытия шифра путем перебора всех ключей. Однако, этот критерий не учитывает других важных требований к криптосистемам:

 

  • невозможность раскрытия или осмысленной модификации информации на основе анализа ее структуры,

 

  • совершенство используемых протоколов защиты,

 

  • минимальный объем используемой ключевой информации,

 

  • минимальная сложность реализации (в количестве машинных операций), ее стоимость,

 

  • высокая оперативность.

 

Поэтому желательно конечно использование некоторых  интегральных показателей, учитывающих  указанные факторы. Но в любом  случае выбранный комплекс криптографических  методов должен сочетать как удобство, гибкость и оперативность использования, так и надежную защиту от злоумышленников циркулирующей в системе информации.

 

 

 

 

 

 

 

 

 

Литература

 

  1. Партыка Т.Л., Попов И.И.  Информационная безопасность. Учебное пособие для студентов учреждений среднего профессионального образования.— М.: ФОРУМ: ИНФРА-М, 2004.
  2. Крысин А.В.   Информационная безопасность. Практическое руководство —   М.: СПАРРК, К.:ВЕК+,2003.
  3. Тарасюк М.В.  Защищенные информационные технологии. Проектирование и применение — М.: СОЛОН-Пресс, 2004.
  4. Лукашов И. В. Криптография? Железно! //Журнал «Мир ПК». 2003. № 3.
  5. Панасенко  С.П., Защита информации в компьютерных сетях // Журнал «Мир ПК»  2002   № 2.
  6. Бун<span class="dash041e_0441_043d_043e_0432_043d_043

Информация о работе Криптографические методы защиты информации