Синхронная цифровая иерархия

Автор работы: Пользователь скрыл имя, 15 Июля 2011 в 10:38, доклад

Описание работы

Синхронная оптическая сеть (SONET) или технология синхронной цифровой иерархии (SDH), как ее называют в Европе - это набор стандартов для обеспечения сопряжения оптических сетей эксплуатационных телефонных компаний (OTC).

Файлы: 1 файл

Синхронная иерархия.doc

— 724.00 Кб (Скачать файл)

 
Рис.4.9.Структура канала управления F1.

Байт S1 определяет параметр качества источника  синхронизации узла генерации транспортного модуля. Информация о параметре качества источника синхронизации передается комбинацией битов 5-8 в составе байта S1. Возможные значения параметров качества источника синхронизации приведены в табл.4.5. Передача информации о качестве источника синхронизации позволяет избежать проблем, связанных с нарушениями в структуре системы синхронизации. Учитывая, что система передачи на основе SDH использует принципы синхронной передачи и мультиплексирования, параметры синхронизации в SDH чрезвычайно важны. С увеличением разветвленности сети, использованием концепций резервирования и самозалечивающихся сетей, повышается вероятность возникновения проблем, связанных с системой синхронизации. Так, например, в процессе реконфигурации или гибкого переключения на резерв, система синхронизации должна также реконфигурироваться. Передача информации о качестве источника синхронизации конкретного узла дает возможность авторегулирования процессов в системе синхронизации, например, сигнал от источника плохого качества не используется для распределения по сети и синхронизации от него других узлов.

Параметр Приоритет при использовании Значение  параметра
0010 Наиболее высокий G.811 первичный источник  синхронизации (PRC)
0100   G.812 вторичный источник  синхронизации транзитного узла
1000   G.812 вторичный источник  синхронизации оконечного узла
1011   Источник синхронизации  цифрового оборудования
1111 Наиболее низкий Не использовать для внешней синхронизации.
0000   Качество не определено
 

Таблица 4.5.Возможные значения параметра источника синхронизации.

Назначение  указателей.

    Указатели выполняют в технологии SDH две  основные функции: 

    • обеспечение быстрого поиска и доступа к нагрузке;

    • обеспечение процедур выравнивания и компенсации рассинхронизации передаваемых потоков.

    Первая  функция указателей является наиболее важной, поскольку именно с ней  связано основное преимущество технологии SDH - отсутствие необходимости пошагового мультиплексирования/ демультиплексирования. Указатели административных блоков AD PTR и блоков нагрузки TU PTR обеспечивают прямой доступ к загруженному в синхронный транспортный модуль потоку на любом уровне (рис.4.10). Как видно из рис.4.10, в системах передачи SDH используются два типа указателей - административной (AU-PRT) и трибутарной групп (TU-PTR). Указатели образуются байтами Н, описанными в предыдущем разделе.

 
Рис.4.10.Механизм организации прямого доступа к нагрузке.

Механизм  формирования указателей - обратный к  механизму поиска нагрузки, представленной на рис.4.10. Схематически его можно представить рис.4.11.

 
Рис.4.11.Структура присвоения/поиска, формирование сигнала SDH.

5. Методы контроля  чётности и определения  ошибок в системе  SDH

В системе SDH используется метод контроля параметров ошибки без отключения канала, который получил название метода контроля четности (Bit Interleaved Parity - В1Р). Этот метод, также как и CRC, является оценочным, но он дает хорошие результаты при анализе систем передачи SDH. Алгоритм контроля четности достаточно прост (рис.5.1). Контроль четности выполняется для конкретного блока данных цикла в пределах групп данных по 2, 8 и 24 бита (BIP-2, BIP-8 и В1Р-24 соответственно). Эти группы данных организуются в столбцы, затем для каждого столбца рассчитывается его четность, т.е. четное или нечетное количество единиц в столбце. Результат подсчета передается в виде кодового слова на приемную сторону. На приемной стороне делается аналогичный расчет, сравнивается с результатом и делается вывод о количестве ошибок четности. Результат сравнения передается в направлении, обратном передаче потока.

 
Рис.5.1.Алгоритм контроля чётности.

Метод контроля четности является оценочным, поскольку несколько ошибок могут  компенс ровать друг друга в смысле контроля четности, однако этот метод  дает приемлемый уровень оценки качества цифровой системы передачи. Поскольку технология SDH предусматривает создание секционных заголовков и заголовк пути, метод контроля четности дает возможность тестирования параметров цифровой системы передачи от секции к секции и от начала до конца маршрута. Для этого используются специальные байты (см. выше) в составе заголовков SОН и РОН. Например, количество ошибок, обнаруженно в канале В3 передается в байте G1 РОН VC-4 следующего цикла. На рис.5.2 представлена cxема посекционного мониторинга параметра ошибки BIP. Используемые для контроля четности байты связанные с ними участки цифровой системы передачи приведены в табл.5.1.

 
Рис.5.2.Посекционный мониторинг параметров цифровой передачи.

Байт Заголовок Длина Секция  мониторинга
B1 RSOH BIP - 8 STM - 1
B2 MSOH BIP - 24 STM - 1 без RSOH
B3 POH VC - 3/4 BIP - 8 VC - 3/4
V5 POH VC - 1/2 BIP - 2 VC - 1/2

Таблица 5.1.Байты, используемыедля контроля чётности и участки SDH.

6. Резервирование

    К современной цифровой первичной  сети предъявляются повышенные требования в части параметров ее надежности. В связи с этим современные первичные сети строятся с использованием резервных трактов и коммутаторов, выполняющих оперативное переключение в случае неисправности на одном из каналов. В этом случае в состав системы передачи включаются цепи резервирования мультиплексорной секции (Multiplex Section Protection - MSP). Как было показано выше, в сети SDH осуществляется постоянный мониторинг параметров ошибки (процедура контроля четности BIP) и параметров связности. В случае значительного ухудшения качества передачи в мультиплексорной секции выполняется оперативное переключение (APS) на резервную мультиплексорную секцию. Это переключение выполняется коммутаторами. По типу резервирования различаются коммутаторы APS с архитектурой 1+1 и 1:n (рис.6.1).

    Для управления резервным переключением  используются байты К1 и К2 секционного  заголовка. В байте К1 передается запрос на резервное переключение и  статус удаленного конца тракта. В  байте К2 передается информация о  параметрах моста, используемого в APS с архитектурой 1:n, данные по архитектуре MSP и сообщения о неисправностях, связанные с APS. Различные варианты архитектуры MSP используются в различных схемах резервирования. Наибольшее распространение имеют две схемы, непосредственно связанные с кольцевой топологией сетей SDH -схема "горячего резервирования" (рис.6.2а) и схема распределенной нагрузки (рис.6.2b). В первом случае трафик передается как в прямом, так и в резервном направлении. В случае повреждения происходит реконфигурация и создается резервный канал. В схеме распределенной нагрузки половина графика передается в прямом, половина - в обратном направлении. В этом случае при возникновении неисправности происходит переключение на уровне ресурсов.

Согласно ITU-T G.841 время резервного переключения не должно превышать 50 мс.

 
Рис.6.1.Архитектура MSP.

 
Рис.6.2.Схемы резервирования

Информация о работе Синхронная цифровая иерархия