Автор работы: Пользователь скрыл имя, 16 Ноября 2010 в 19:50, Не определен
Лабораторная работа
Тема: Расчет характеристик системы передачи дискретных сообщений
Исходные данные:
Структурная схема системы передачи дискретных сообщений:
ИС – источник сообщения; Д – дискретизатор; К – кодер; ЛС – линия связи; ДМ – демодулятор; ДК – декодер; Ф – фильтр-восстановитель.
Исходные данные
amin,В | amax,В | Fc, Гц | j | Вид. мод | N0, В2/Гц |
0 | 25,6 | 106 | 198 | ФМ | 10-8 |
Способ приема - когерентный.
Источник сообщений.
Источник сообщений выдает сообщение а(t), представляющее собой непрерывный стационарный случайный процесс, мгновенные значения которого в интервале а min a max распределены равномерно, а мощность сосредоточена в полосе частот от 0 до Fc.
Требуется:
Вычисления.
1)
=0.0390625
2)
σа= 14.78 В
Дискретизатор.
Передача непрерывного процесса осуществляется дискретными методами. Для этого сообщение а(t) дискретизируется по времени и квантуется по уровню с равномерным шагом. Шаг квантования по уровню Dа= 0,1В.
Требуется:
Вычисления.
Т.к. p(a1)= p(a2)=…= p(ai), то
Следовательно бит/символ
Кодер.
Кодирование осуществляется в два этапа.
Первый этап:
Производится
примитивное кодирование
Второй этап:
К полученной k– разрядной двоичной кодовой комбинации добавляется один проверочный символ, формируемый простым суммированием по модулю 2 всех информационных символов (код (n, n-1) с одной проверкой на четность).
В результате этих преобразований на выходе кодера образуется синхронная двоичная случайная последовательность b(t) (синхронный случайный телеграфный сигнал), состоящая из последовательности биполярных импульсов единичной высоты, причем положительные импульсы в ней соответствуют символу «0», а отрицательные – символу «1» кодовой комбинации.
Требуется:
Вычисления.
3) j=198. В двоичном виде-
0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
a8 | a7 | a6 | а5 | а4 | а3 | а2 | а1 |
проверочный разряд а9= а8+а7+ а6+ а5+ а4+ а3+ а2+ а1
В результате получаем кодовую комбинацию: 110001100;
4) Vn = n/∆t=9/ =18·106 бит/с;
T = 1/Vn
=5.5. 10-8 с.
Модулятор.
В модуляторе синхронная двоичная случайная последовательность биполярных импульсов b(t) осуществляет модуляцию гармонического переносчика Um = cos(2πft).
Фазовая модуляция (ФМ).
«0» - U0(t) = Um cos2πft;
«1» - U1(t) = -Um cos2πft.
Требуется:
Вычисления
График спектральной плотности мощности модулирующего сигнала GВ(w):
При увеличении на один порядок мы наблюдаем следующую картину:
; ∆f=2/T=2/5.5. 10-8 =35·106 Гц ;
Гц;
При ФМ:
U0(t) = cos(2πf0 t)= cos(
U1(t) = cos(2πf0 t+π)=- cos
Гц
Канал связи.
Передача сигнала U(t) осуществляется по каналу с постоянными параметрами и аддитивным флуктуационным шумом n(t) с равномерным энергетическим спектром N0/2 (белый шум).
Сигнал на выходе такого канала можно записать следующем образом:
z(t) = U(t) + n(t)
Требуется:
Вычисления.
Вт
, где
;
Так
как ;
Демодулятор.
В демодуляторе осуществляется оптимальная когерентная или некогерентная (в зависимости от варианта) обработка принимаемого сигнала z(t) = U(t) + n(t)
Требуется:
Записать
алгоритм оптимального приема по критерию
минимума средней вероятности ошибки
при равновероятных символах в детерминированном
канале с белым гауссовским шумом.
Вычисления.
1)
Для фазовой модуляции Е0/2 = Е1/2, U1 = –U0, следовательно:
2)
3) P = 1/2 (1-Ф(х));
Ф(х) – функция Крампа
Дж
4. При
когерентном приёме
Декодер.
В декодере декодирование осуществляется в два этапа. На первом этапе производится обнаружение ошибок в кодовой комбинации. Если ошибки не обнаружены, то на втором этапе из нее выделяются информационные символы, а затем k – разрядная двоичная кодовая комбинация преобразуется в элемент квантованного сообщения.
Требуется:
Вычисления.
Информация о работе Расчет характеристик системы передачи дискретных сообщений