АТС EWSD в качестве коммутационного узла сотовой связи

Автор работы: Пользователь скрыл имя, 22 Марта 2011 в 01:00, курсовая работа

Описание работы

Система EWSD непрерывно совершенствовалась, она была преобразована в коммутационную систему, обеспечивающую услуги цифровых сетей интегрального обслуживания (ЦСИО), позволяющих одновременно осуществлять коммутацию и передачу телефонных вызовов, данных, текстов и изображений.

Содержание работы

Введение.

Глава 1. АТС EWSD. Общие сведения об АТС EWSD.

2. Состав оборудования и структурная схема АТС EWSD.

2.1. Состав оборудования.

2.2. Назначение и структура линейного блока.

2.3.Назначение и структура группового линейного блока.

3. Программные управляющие устройства.

4. Программное обеспечение.

5. Типовой процесс установления соединения.

Глава 2. Сотовые сети.

1.Общая информация.

2.Принцип работы.

3.Стандарт GSM-900.

Глава 3. Работа коммутационного узла.

1.«Хэндовер».

2.Оборудование коммутатора.

3.Взаимодействие базовой станции и коммутационного узла.

Заключение.

Список использованных источников.

Файлы: 1 файл

курс.docx

— 189.87 Кб (Скачать файл)

Содержание.

Введение.

Глава 1. АТС EWSD. Общие сведения об АТС EWSD.

    2. Состав оборудования и структурная схема АТС EWSD.

      2.1. Состав оборудования.

      2.2. Назначение и структура линейного блока.

      2.3.Назначение и структура группового линейного блока.

    3. Программные управляющие устройства.

    4. Программное обеспечение.

    5. Типовой процесс установления соединения.

Глава 2. Сотовые сети.

    1.Общая информация.

    2.Принцип работы.

    3.Стандарт GSM-900.

Глава 3. Работа коммутационного узла.

    1.«Хэндовер».

    2.Оборудование коммутатора.

    3.Взаимодействие базовой станции и коммутационного узла.

Заключение.

Список использованных источников.

Приложения. 

       
 

    Введение. 

     В этой курсовой работе я собираюсь проанализировать АТС EWSD и технологию мобильной связи, что бы выяснить возможномть использования этой станции в качестве коммутационного узла сотовой сети связи.

     Начиная с середины 70-х гг. в ряде стран активно начала проводиться работа по созданию полностью электронных систем коммутации. Это стало возможным благодаря успехам, достигнутым  в области микроэлектроники и электросвязи.  Одной из первых цифровых систем коммутации явилась система EWSD, разработанная на фирме Сименс и впервые введенная в эксплуатацию в 1981г. Благодаря своей высокой надежности, экономичности и многообразию функций, предоставляемых абонентам, система получила широкое распространение во многих странах мира. По своей емкости, характеристикам, объему предлагаемых услуг и сети система EWSD является универсальной, ее можно применять в качестве сельских телефонных станций малой емкости, городских станций большой емкости, транзитных узлов, междугородных и международных станций, коммутационного центра для подвижных объектов радиотелефонной сети.

     Система EWSD непрерывно совершенствовалась, она была преобразована в коммутационную систему, обеспечивающую услуги цифровых сетей интегрального обслуживания (ЦСИО), позволяющих одновременно осуществлять коммутацию и передачу телефонных вызовов, данных, текстов и изображений.

     В настоящее время проводится модернизация системы с целью обеспечения сообщений с высокой скоростью ( до 600 Мбит/с), что позволит осуществлять передачу сигналов кабельного телевидения.

       

     Глава 1. АТС EWSD. 

  • Общие сведения об АТС EWSD.
  • Работы по созданию системы EWSD начались на фирме Сименс в 1977г. Первая АТС системы EWSD была установлена и введена в эксплуатацию на сети Южной Африки в 1981г. Массовое внедрение АТС системы EWSD началось с 1982г. и продолжается, хотя и в модифицированных вариантах, до настоящего времени. Если в 1982г. число абоненстких линий (АЛ), обслуживаемых АТС типа EWSD, составляло 148500, то к 1987г. было введено АТС системы EWSD в 30 странах с общим числом АЛ в 4,5 млн. При этом, если в 1987г. АТС системы EWSD обслуживали 2,1 млн. АЛ, то в течение 1988г. уже 3 млн. АЛ и на конец 1988г. общее число АЛ, подключенных к  АТС системы EWSD, составило уже 7,3 млн., а число стран, в которых были установлены АТС данного типа, увеличилось еще на две, в том числе и Россия (г. Астрахань).
  • Система EWSD представляет собой единый ряд совмещенных между собой цифровых АТС, предназначенных как для сетей общего пользования, так и для специальных сетей.
  • Для сетей общего пользования выпускаются:
  • а) оконечно-транзитные и оконечные станции для городских телефонных сетей емкостью до 250000 АЛ и 60000 соединительных линий (СЛ);
  • б) сельские телефонные станции емкостью до 7500 АЛ;
  • в)  междугородные телефонные станции, которые могут использоваться в качестве международных, а также узлов автоматической коммутации (УАК), при этом в состав междугородных станций предусматривается включение цифровых коммутаторов оператора (общим числом до 300) для предоставления абонентам специальных услуг.
  • Среди станций системы EWSD специального назначения выпускаются станции в контейнерном исполнении и станции для подвижных объектов с использованием радиоканалов.
  • Станции системы EWSD большой емкости обеспечивают коммутацию при нагрузке до 25200 Эрл. Число одновременно обслуживамых вызовов составляет около 1000, а объем общей памяти 64 Мбайта.
  • Станции системы EWSD могут быть оборудованы системой бесплатного междугороднего сервиса, который может быть представлен для 20000 абонентов.
  • В системе EWSD передача сигналов взаимодействия осуществляется по общему каналу сигнализации (ОКС) системы сигнализации №7.
  • Для малонаселенных сельских районов разработаны телефонные станции EWSD, укомплектованные кроссом и блоками питания, которые могут быть смонтированы в специальных контейнерах.
  • Емкость сельских АТС системы EWSD может быть от 50 до 7500 АЛ. Ниже приведены максимальные значения их технических характеристик:
  • пропускная  способность–1500 Эрл; 
  • число СЛ-1900 Эрл;
  • число обслуженных вызовов в ЧНН–60000  Эрл; 
  • число АЛ-7500 Эрл.
  • Фирма Сименс выпускает следующие три типа мобильбных контейнерных АТС системы EWSD:
  • 1) наименьший контейнер имеет длину 3029 мм (10 футов). Обычно используется для организации выносного линейного блока, в который включены АЛ для удаленных абонентов, число которых не может превышать 1900;
  • 2) контейнер размером 6056 мм (20 футов) также может использоваться для удаленного линейного блока, но емкостью до 3800 АЛ, а также в качестве оконечных АТС емкостью до 2600 АЛ;
  • 3) наибольший контейнер имеет длину 12192 мм (40 футов) и предназначается для АТС емкостью до 6000 АЛ.
  • Контейнеры могут совмещаться.
  • На АТС системы EWSD, предназначенную для подвижных объектов, могут опираться до 80000 абонентов.
  • Оконечные или транзитные станции системы EWSD подразделяются на три типа:
  • ДЕ-3 емкостью 3000 АЛ или 1900 СЛ; 
  • ДЕ-4 емкостью 12000 АЛ или 8000 СЛ; 
  • ДЕ-5 емкостью 100000 АЛ или 64000 СЛ.
  • Обозначение для контейнерной станции ДЕ-С не обязательно.
  • Могут быть организованы смешанные оконечно-транзитные станции. Транзитные станции могут быть использованы в качестве как национальных УАК, так и меджународных центров коммутации.
  • Все оборудование станций системы EWSD размещается в шкафах двух видов, различающихся высотой (2450 и 2000 мм), с шириной 750 мм и глубиной 500 мм. В станциях используются стандартные ТЭЗ размером 230 на 277 мм с разъемом на 425 штифтов. При этом используются двухслойные и многослойные печатные платы.
  • Всего имеется 120 типов ТЭЗов, однако обычно используются примерно 60 типов ТЭЗов для оконечной станции емкостью 10000 номеров. Все оборудование АТС емкостью 10000 номеров размещается примерно в 30 шкафах, требующих площадь в 35 м2.
  • Исходящее соединение в системе EWSD устанавливается с использованием пути первого выбора и семи обходных путей. В системе предусмотрено также динамическое управление потоками информации.
  • Услуги ЦСИО для абонентов могут вводиться постепенно по мере спроса, причем введение новых технологий (доступ к различным услугам ЦСИО) не требует изменения архитектуры системы.
  • Если телефонная станция EWSD является первой цифровой станцией на сети, то техническое обслуживание может осуществляться посредством оборудования, входящего в состав станции, обслуживание нескольких станций этого типа целесообразно организовывать из центра технической эксплуатации.
  • Станции типа EWSD предоставляют абонентам различные дополнительные виды обслуживания:
  • сокращенный набор номера;
  • запрет некоторых видов исходящей связи;
  • передача входящего вызова при отсутствии абонента на любой номер;
  • переадресация;
  • наведение справки во время разговора;
  • конференц-связь;
  • учет стоимости разговоров с распечаткой;
  • автоматическая побудка;
  • ограничение вмешательства телефонистки и т. д.
  •         
  • Кроме того, предусмотрены специальные услуги по запоминанию и обработке данных. Например, доступ абонентов к базам текстов и данных, к электронной почте, факсимильной связи, сообщениям механического голоса и др.
  • Рабочее напряжение питания станции 48 или 60 В. Оборудование надежно работает при температуре окружающей среды 5-400 С при относительной влажности до 80%.
  • 2. Состав оборудования и структурная схема АТС EWSD.
  • 2.1. Состав оборудования.
  • (См. Прил 1.)
  • Коммутационная система EWSD с возможностью предоставления услуг ЦСИО в своем составе имеет следующие основные виды оборудования (прил.1):
  • линейный блок (ЛБ);
  • групповой линейный блок (ГЛБ);
  • цифровое коммутационное поле (ЦКП);
  • управляющее устройство ОКС (УУ-ОКС);
  • групповые процессоры (ГПр);
  • координационный процессор (КПр);
  • процессор ОКС (ПрОКС).
  • Заштрихованные квадраты указывают на то, что соответствующие блоки были модифицированы при введении в станцию услуг ЦСИО.
  • В ЛБ и ГЛБ осуществляется периферийная (предварительная) обработка вызовов. Наиболее сложные функции по выбору пути и установлению соединения в коммутационном поле, интерфейсу групповых процессоров (ГПр) между собой и с управляющим устройством цифрового коммутационного поля (УУ-ЦКП), а также функции административного управления и обеспечения надежности функционирования всей коммутационной системы, обеспечение взаимосвязи с центром технического обслуживания выполняет координационный процессор (КПр), который представляет собой централизованное управляющее устройство станции EWSD.
  • 2.2. Назначение и структура линейного блока.
  • Линейный блок содержит модули абонентских линий (МАЛ), которые являются по существу абонентскими комплектами. На станциях с услугами ЦСИО имеются два типа МАЛ: для аналоговых АЛ (МАЛ-А) и для цифровых АЛ (МАЛ-Ц).
  • На чисто телефонной станции EWSD без услуг ЦСИО в ЛБ содержатся МАЛ-А и могут входить МАЛ-Ц по одинаковому интерфейсу в 64 кбит/с.
  • В ЛБ могут быть включены около 1000 аналоговых или 500 цифровых АЛ. При этом может быть совмещенное включение аналоговых и цифровых АЛ в одном ЛБ.
  • На станциях EWSD с услугами ЦСИО цифровые АЛ подключаются к ЛБ по интерфейсу основного доступа ЦСИО [1], т.е. по АЛ передаются цифровые потоки сигналов двух информационных каналов типа В со скоростью передачи 64 кбит/с и канала сигнализации (типа D) со скоростью 16 кбит/с. Условное обозначение основного доступа: 2В+D.
  • Для подключения цифровых коммутаторов оператора (телефонистки) на АМТС системы EWSD используют систему сервиса оператора (ССО). Цифровые коммутаторы (ЦК) управляются с помощью специального децентрализованного управляющего устройства на основе микропроцессоров (прил.2).
  • У оператора имеется в распоряжении видеодисплей Д, а вместо записи заказов используется запоминающее устройство. Имеется печатающее устройство ПУ. Для обеспечения необходимой надежности ССО каждый коммутатор ЦК подключается к двум ЛБ (см. прил.2), причем одна из АЛ находится в работе, а вторая в горячем резерве.
  • Всего может быть до 300 ЦК, из которых не более 60 подключается к одному ЛБ. ЦК может находиться непосредственно на АМТС или на расстоянии до 6 км.
  • 2.3.Назначение и структура группового линейного блока.
  • Линейный блок подключается к двум ГЛБ с помощью четырех 32 канальных трактов со скоростью передачи по каждому из каналов 64 кбит/с.
  • ЛБ может находиться не только на станции, но и быть удаленным выносным блоком. В этом случае ЛБ подключается к станционному оборудованию (т.е. к ГЛБ) с помощью двух или четырех трактов ИКМ-32, в зависимости от емкости ЛБ. Таким образом, ЛБ имеет максимальную емкость 976 АЛ и до 128 цифровых каналов для связи с ГЛБ станции в качестве удаленного концентратора.
  • При использовании контейнеров в одном контейнере может  находиться несколько концентраторов (ГЛБ) с общей емкостью до 3200 АЛ.
  • На станции EWSD с услугами ЦСИО может быть три типа ГЛБ: А, В и С (см. прил.1).
  • В ГЛБ типа А (ГЛБ-А)  включаются ЛБ аналоговых АЛ. В ГЛБ типа В (ГЛБ-В) – ЛБ цифровых каналов и непосредственно цифровые АЛ по основному доступу ЦСИО 2В+D, в ГЛБ типа С (ГЛБ-С)  включаются цифровые соединительные линии от других станций, или учрежденческих станций, как правило, по первичному доступу 3ОВ+D, где скорость передачи по каналу D составляет 64 кбит/с. При этом предусматривается возможность использования любой из стандартных систем сигнализации МККТТ (МСЭ-Т), в том числе системы сигнализации при связи через спутник.
  • Всего на станции EWSD может быть 504 ГЛБ.
  • Каждый ГЛБ имеет групповой процессор (ГПр) со своей собственной основной памятью. Один из 128 цифровых каналов, с помощью которых ГЛБ подключается к цифровому коммутационному полю (ЦКП) используется для связи с ГПр для передачи данных управления, скорость передачи сигналов от ГЛБ к ЦКП составляет приблизительно 8 Мбит/с (8192 кбит/с). Следует заметить, что ГЛБ является полностью независимым и может рассматриваться как блок расширения станции.
  • Каждый ГЛБ (прил.3) содержит групповой коммутатор (ГК), представляющий мультиплексор, групповой процессор (ГПр), интерфейсный блок (ИБ) для связи ГЛБ с ЦКП, блок сигнализации (БС), интерфейсный блок абонентских и соединительных линий (БАСЛ) для тех АЛ и СЛ, которые непосредственно подключаются к ГЛБ (см. прил.1). Подключение ЛБ, в которых содержатся МАЛ, к ГЛБ осуществляется через цифровой интерфейсный блок (ЦИБ).
  • Групповой процессор, выполненный на основе микропроцессора, выполняет функции по управлению модулями МАЛ и блоками БАСЛ при управлении АЛ и СЛ (обнаружение вызова, проверка АЛ на занятость и др.), управление ГК при установлении связи с ЦКП через ИБ, прием цифр номера, управление обменом управляющей информацией через ИБ и др.
  •        Групповой коммутатор (ГК) представляет собой однозвенный временной коммутатор без блокировок. ГК подключается к дублированному ЦКП через ИБ. В ГК  осуществляется концентрация нагрузки от абонентов в соотношении 2:1; нагрузка, поступающая по СЛ проходит без концентрации в соотношении 1:1. В последнем случае может быть использован вместо ГК мультиплексор. Интерфейсный блок (ИБ) предназначен для проключения цифровых трактов со скоростью передачи 8 Мбит/с между ГК и ЦКП. Групповой процессор (ГПр) информирует ЦИБ о необходимости установления дублированного пути через ЦКП. При установлении соединения в противоположном направлении ИБ принимает устанавливаемое соединение от одного из двух блоков ЦКП.
  •       Блок сигнализации (БС) генерирует необходимые зуммерные сигналы или вырабатывает сигналы учета разговора. Этот блок обеспечивает также тестирование телефонных аппаратов, АЛ и СЛ.
  • Блок абонентских и соединительных линий БАСЛ, содержащий модули АЛ и СЛ МАЛ и МСЛ, предназначен для подключения АЛ и СЛ к внутреннему интерфейсу ГЛБ.
  • 2.4.Цифровое коммутационное поле.
  • Цифровое коммутационное поле состоит из временных и пространственных коммутаторов ВК и ПК, которые составляют временную и пространственную ступени (В и П) (прил.4). На временной ступени кодовая комбинация временного канала, содержащая восемь символов в соответствии с адресной информацией меняет временной интервал (временной канал – ВРК) в цифровом тракте и сам цифровой тракт, если это необходимо. На пространственной ступени может измениться цифровой тракт, но не ВРК   в   30-каналь-ном   цифровом   тракте.   Временной   коммутатор коммутирует тракты от блоков ГЛБ со скоростью 8 Мбит/с, что составляет 128 временных   каналов  и    имеет   параметры   4х4.   Пространственные коммутаторы коммутируют сигналы на такой же скорости, при этом различают три типа ПК: с параметрами 8х15,16х16, 15х8 (см.прил.4).
  • Управление установлением соединения в ЦКП осуществляет управляющее устройство УУ-ЦКП в соответствии с информацией, поступившей от координационного процессора (КПр). В прил.5 показана упрощенная схема КП на 65536 временных каналов. Цифровое коммутационное поле однонаправленное. Для установления каждого соединения требуется  установить два соединения через ЦКП – одно в направлении приема, другое – в направлении передачи (прил.6).
  • Цифровое коммутационное поле всегда дублировано (плоскость 0 и 1). Каждая плоскость может работать независимо от другой. При выходе из строя одной из плоскостей оставшаяся обслуживает вызовы с нормированным качеством обслуживания. Каждое соединение проключается одновременно через обе плоскости, так что в любой момент в случае отказа имеется резервное соединение.
  • Программные управляющие устройства.
  • В настоящее время известно несколько принципов построения программных управляющих устройств АТС:
  • централизованный;
  • децентрализованный;
  • распределенный;
  •            В системе EWSD используется  децентрализованный принцип построения управляющего устройства: управляющие функции рассредоточены по отдельным  УУ, а их работой управляют ЦУУ.
  • Функции ПУУ выполняют ГПр, Пр ОКС и УУ ЦКП, они являются активными и работают под управлением КПр, который производит обработку полученной информации для маршрутизации, выбора пути, зонирования, учета скорости, поддерживает связь с центром технической эксплуатации, а также осуществляет надзор  за всеми подсистемами, принимает сообщения об ошибках обнаруживает и нейтрализует их, осуществляет обработку аварийной сигнализации, производит реконфигурацию системы, управляет интерфейсом человек-машина.
  • В станциях малой и средней емкости используется координационный процессор КПр-112 производительностью 60000 вызовов в ЧНН (см. прил.6), его главные функциональные блоки: процессор (Пр), запоминающее устройство (ЗУ), арбитр шины (АШ), блок наращивания шины (БНШ), процессор ввода-вывода (ПВВ), все блоки полностью дублированы (плоскости 0 и 1).
  • В станциях EWSD средней и большой емкости используется координационный процессор КПр-113 – это многопроцессорная система и может наращиваться по ступеням. Максимальная производительность КПр-113 – 1000000 вызовов в ЧНН.
  • Однако современные версии EWSD способны обрабатывать уже и до 40000000 вызовов.
  • В КПр-113 n процессоров работают параллельно с разделением нагрузки, резервирование их осуществляется по принципу n+1 (Номинальная расчетная нагрузка n процессоров распределяется между n+1 процессором.  Если выйдет из строя один процессор, работа будет продолжена в нормальном режиме без ухудшения качества обслуживания.)
  • В станциях системы EWSD применяется система сигнализации по общему каналу №7. Для этого станция оборудована устройством для системы сигнализации по общему каналу (ОКС), его основными элементами являются управляющее устройство ОКС - УУ-ОКС и блок сигнализации БС в ГЛБ (см. прил.1 и 3). Функции этих устройств зависят от их местоположения: в исходящей или входящей телефонной станции, а также в транзитных телефонных станциях с передачей сигналов управления и взаимодействия по общему каналу эти устройства работают в качестве пункта обработки сигнальной информации; а в транзитной станции - в качестве транзитного пункта. Одно устройство ОКС может обработать нагрузку, поступающую от 254-х цифровых сигнальных 30-канальных трактов. Оно подключается к ЦКП по трактам, имеющим скорость передачи 8 Мбит/с.  Между   устройством   ОКС   и   каждой    плоскостью  ЦКП  имеется 254 цифровых канала со скоростью передачи 64 кбит/с для каждого тракта. Для надежности устройство ОКС имеет дублированный процессор Пр ОКС, соединенный с КПр с помощью дублированной системы шин.
  • Главными функциональными блоками КПр-113 являются (прил.7): основной процессор (ОП) для обработки вызовов и технического обслуживания; процессор обработки вызовов (ПОВ) – занимается только обработкой вызовов и устанавливается на станциях, где не хватает мощности ОП; общее запоминающее устройство (ОЗУ); контролер ввода-вывода (КВВ); процессоры ввода-вывода (ПВВ), как в КПр-112.
  • Программное обеспечение (ПО) станций системы EWSD имеет высокую надежность, широкие динамические возможности и гибкость при вводе дополнительных функций. Это является результатом использования перезагружаемого ПО. В каждом процессоре ПО делится на:
  • независимую от применения часть – операционную систему, специально приспособленную к функциям подсистемы аппаратного обеспечения;
  • специфическую для применения часть - программное обеспечение пользователя.
  • Важным элементом ПО EWSD являются различные типы данных. Данные классифицируются в соответствии с их областью действия и долговечностью.
  • 4. Программное обеспечение.
  • Программное обеспечение (ПО) организовано с ориентацией на выполнение определенных задач соответственно подсистемам EWSD. Внутри подсистемы ПО имеет функциональную структуру. Операционная система (ОС) состоит из  программ, приближенных к аппаратным средствам и являющихся обычно одинаковыми для всех коммутационных станций. Программы пользователя зависят от конкретного проекта и варьируются в зависимости от конфигурации станции.
  • Современная автоматизированная технология, жесткие правила разработки ПО, а также язык программирования CHILL (в соответствии с рекомендациями МККТТ) обеспечивают функциональную ориентированность программ, а также поэтапный контроль процесса их разработки.
  • Типовой процесс установления соединения.
  • Прежде всего следует отметить, что все соединения в станциях EWSD – четырехпроводные. При этом два пути - от вызывающего абонента к вызываемому и обратный - устанавливаются независимо.
  • При снятии телефонной трубки с телефонного аппарата модуль МАЛ определяет наличие вызова от абонента и посылает сигнал о поступлении вызова в ГПр линейного блока (см. прил.1). ГПр определяет категорию абонента и класс обслуживания и посылает команду в групповой коммутатор, который соединяет МАЛ с блоком сигнализации БС (см. прил.3). Генератор БС посылает вызывающему абоненту зуммерный сигнал ответа станции, а кодовый приемник в БС при этом готовится для приема номера вызывающего абонента. Генератор от МАЛ отключается при поступлении первой цифры номера.
  • Кодовый приемник БС передает полученную информацию о номере вызываемого абонента в ГПр, который, добавив к номеру вызываемого абонента полученную ранее информацию о категории абонента и  классе обслуживания, передает ее для анализа в координационный процессор КПр.
  • Получив прямую информацию о вызываемом абоненте, КПр определяет свободна ли АЛ. Если свободна, то КПр устанавливает соединение от вызываемого абонента к вызывающему через ЦКП.
  • Если соединение установлено правильно, то КПр посылает информацию в ГПр вызывающего абонента о том, что линия вызываемого абонента проключена через ГК, передавая при этом номер занятого оборудования.
  • ГПр вызываемого абонента посылает команду в МАЛ о необходимости включения сигнала посылки вызова, после чего МАЛ вызывающего абонента посылает сигнал контроля посылки вызова.
  • При ответе вызываемого абонента  ГПр проключает соединение в ГК ГЛБ вызываемого абонента, а ГПр вызывающего абонента получает сигнал ответа абонента от ГПр  вызываемого абонента. Таким образом, соединение установлено.
  • Глава 2. Сотовые сети.
  • 1.Общая информация.
  • Сотовые сети связи (ССС) предназначены для обеспечения подвижных и стационарных объектов телефонной связью и передачей данных. В ССС подвижными объектами являются либо наземные транспортные средства, либо непосредственно человек, находящийся в движении и имеющий портативную абонентскую станцию (подвижный абонент). Возможность передачи данных подвижному абоненту резко расширяет его возможности, поскольку кроме телефонных сообщений он может принимать телексные и факсимильные сообщения, различного рода графическую информацию (планы местности, графики движения и т.п.), медицинскую информацию и многое другое.
  • Сотовая связь продолжает уверенно расширять рынок предоставления услуг. 
    На смену аналоговым приходят цифровые системы второго поколения и в то же время ведутся интенсивные подготовки систем третьего поколения.
  • Радиотелефонные системы общего пользования в настоящее время составляют основной вид связи с подвижными объектами. Они, объединяя своих потребителей в одну группу, дают им возможность общего доступа к системе связи независимо от ведомственной принадлежности (по принципу городской телефонной сети). Это преимущество систем обеспечивает широкий комплекс услуг: автоматическое соединение абонентов между собой и с абонентами городской телефонной сети, а также других городов и государств с использованием междугородных и международных линий; передачу речи и данных, а в ближайшем будущем телексных и факсимильных сообщений; цветных графических изображений; информации из банков данных и т.п. Радиотелефонные системы общего пользования делятся на два вида: 
                1) Системы с большими зонами обслуживания (радиальные системы); 
                 2) Системы с малыми зонами обслуживания (сотовые системы связи).
  • Нас интересует именно системы с малыми зонами обслуживания .
  • Сотовые системы подвижной радиосвязи имеют принципиально новую структуру, основанную на сотовом построении и распределении частот,согласно которому зона обслуживания делится на большое число ячеек ("сот"), каждая из которых обслуживается отдельной радиостанцией небольшой мощности, находящейся в центре ячейки (базовые станции) . 
    Небольшая мощность передатчиков в системах малых зон обслуживания и, соответственно, небольшой радиус их действия, допускает организацию повторения частот приема-передачи через 1 - 2 зоны. Это позволяет реализовать основное достоинство сотовой системы - обеспечение высококачественной радиосвязью большого количества подвижных абонентов в условиях ограниченного частотного диапазона.
  • Принцип работы.
  •     Каждая из базовых станций содержит от одной до двенадцати приемо-передающих антенн, направленных в разные стороны, чтобы обеспечить связью абонентов со всех сторон. На профессиональном жаргоне антенны также называют «секторами». Со стороны они выглядят, как большие серые прямоугольные блоки.
  • От антенны сигнал по кабелю передается непосредственно в управляющий блок базовой станции. Совокупность секторов и управляющего блока обычно и называется – BS, Base Station, базовая станция. Несколько базовых станций, чьи антенны обслуживают какую-либо определенную территорию или район города, подсоединены к специальному блоку – так называемому LAC, Local Area Controller, «контроллер локальной зоны», часто называемому просто контроллером. К одному контроллеру обычно подключается до 15 базовых станций.
  • В свою очередь, контроллеры, которых также может быть несколько, подключены к самому центральному «мозговому» блоку – MSC, Mobile services Switching Center, Центр Управления Мобильными услугами, коммутационный узел или просто - коммутатор. Коммутатор обеспечивает выход (и вход) на городские телефонные линии, на других операторов сотовой связи и так далее.
  • (Прил.8.)
  • В небольших GSM-сетях используется только один коммутатор, в более крупных, обслуживающих более миллиона абонентов, могут использоваться два, три и более MSC, объединенных между собой.
  • Стандарт GSM-900.
  • Самый распространенный в данный момент на территории России стандарт GSM.
  • В стандарте GSM достигается высокая степень безопасности передачи сообщений; осуществляется шифрование сообщений по алгоритму шифрования с открытым ключом (RSA).
  • В целом система связи, действующая в стандарте GSM, рассчитана на ее использование в различных сферах. Она предоставляет пользователям широкий диапазон услуг и возможность применять разнообразное оборудование для передачи речевых сообщений и данных, вызывных и аварийных сигналов; подключаться к телефонным сетям общего пользования (PSTN), сетям передачи данных (PDN) и цифровым сетям с интеграцией служб (ISDN).
  • Основные характеристики стандарта GSM
  • Частоты передачи подвижной станции (приема базовой станции), МГц 890...915
  • Частоты приема подвижной станции и передачи базовой станции, МГц 935...960
  • Дуплексный разнос частот приема и передачи, МГц 45
  • Скорость передачи сообщений в радиоканале, кбит/с 270, 833
  • Скорость преобразования речевого кодека, кбит/с 13
  • Ширина полосы канала связи, кГц 200
  • Максимальное количество каналов связи 124
  • Максимальное количество каналов, организуемых в базовой станции 16...20
  • Вид модуляции GMSK
  • Индекс модуляции ВТ 0,3
  • Ширина полосы предмодуляционного гауссовского фильтра, кГц 81,2
  • Количество скачков по частоте в секунду 217
  • Временное разнесение в интервалах ТDМА кадра (передача / прием) для подвижной станции 2
  • Вид речевого кодека RPE/LTP
  • Максимальный радиус соты, км до 35
  • Схема организации каналов TDMA/FDMA
  • Глава 3. Работа коммутационного узла.
  • «Хэндовер».
  • Этим термином обозначается эстафетная передача обслуживания в сотовых сетях. То есть, когда перемещаетесь и при этом разговариваете по телефону, то, для того чтобы связь не прерывалась, необходимо вовремя переключать Ваш телефон из одного сектора в другой, из одной BS в другую, из одной Local Area в другую и так далее. Соответственно, если бы сектора были напрямую подключены к коммутатору, то всеми этими переключениями пришлось бы управлять коммутатору, которому и без того есть, чем заняться. Многоуровневая схема сети дает возможность равномерно распределить нагрузку, что снижает вероятность отказа оборудования и, как следствие, потери связи.
  • Пример – если вы с телефоном переходите из зоны действия одного сектора в зону действия другого, то переводом телефона занимается управляющий блок BS, не затрагивая при этом «вышестоящие» устройства – LAC и MSC. Соответственно, если переход происходит между разными BS, то им управляет LAC и так далее.
  • Если подробнее то в процессе движения объект пересекает границы ячеек. При этом координаты радиопередатчика, установленного на объекте, по командам MSC передаются от одной BS к другой, переключаясь на свободный частотный канал соседней ячейки. Автоматический поиск свободных каналов и установление соединения осуществляется без нарушения связи по командам ЭВМ, управляющей коммутационным оборудованием.. При перемещении подвижного объекта из одной ячейки в другую ЭВМ фиксирует полученные по радиоканалу управления данные о качестве сигнала, местоположения объекта и некоторые другие, с использованием специальной программы определяет соответствующий заданным требованиям свободный канал в той ячейке, куда переместился абонент. После этого MSC посылает сигнал для автоматического переключения абонентской станции  на этот канал.  Также MSС Выполняет следущие функции:
    • управление и контроль за работой БС и АС;
    • установление соединений между абонентами и разъединение их по окончании разговора;
    • слежение за качеством передачи;
    • поиск ПО на территории обслуживания;
    • тарификация и диагностика состояния системы.
  • Оборудование коммутатора.
  • Коммутатор в сотовой сети осуществляет практически те же функции, что и АТС в проводных телефонных сетях. Именно он определяет, куда Вы звоните, кто Вам звонит, отвечает за работу дополнительных услуг, и, в конце концов – вообще, определяет, можно ли звонить или нет.
  • На SIM-карте есть специальный номер, так называемый IMSI – International Subscriber Identification Number, Международный Опознавательный Номер Абонента. Это номер уникален для каждой SIM-карты в мире, и как раз по нему операторы отличают одного абонента от другого. При включении телефона он посылает этот код, базовая станция передает его на LAC, LAC – на коммутатор, в свою очередь. Тут в действие вступают два дополнительных модуля, связанных с коммутатором – HLR, Home Location Register и VLR, Visitor Location Register. Соответственно, Регистр Домашних Абонентов и Регистр Гостевых Абонентов. В HLR хранятся IMSI всех абонентов, которые подключены к данному оператору. В VLR в свою очередь содержатся данные обо всех абонентах, которые в данный момент пользуются сетью данного оператора. IMSI передается в HLR (разумеется, в сильно зашифрованном виде; вдаваться подробно в особенности шифрования мы не будет, скажем только, что за этот процесс отвечает еще один блок – AuC, Центр Аутентификации), HLR, в свою очередь, проверяет – есть ли у него такой абонент, и, если есть, то не заблокирован ли он, например, за неуплату. Если все в порядке, то этот абонент прописывается в VLR и с этого момента может совершать звонки. У крупных операторов может быть не один, а несколько параллельно работающих HLR и VLR.
  • (Прил.9.)
  • Взаимодействие базовой станции и коммутационного узла.
  • BSS - оборудование базовой станции, состоит из контроллера базовой станции (BSC) и приемо-передающих базовых станций (BTS). Контроллер базовой станции может управлять несколькими приемо-передающими блоками. BSS управляет распределением радиоканалов, контролирует соединения, регулирует их очередность, обеспечивает режим работы с прыгающей частотой, модуляцию и демодуляцию сигналов, кодирование и декодирование сообщений, кодирование речи, адаптацию скорости передачи для речи, данных и вызова, определяет очередность передачи сообщений персонального вызова.
  • BSS совместно с MSC, HLR, VLR выполняет некоторые функции, например: освобождение канала, главным образом, под контролем MSC, но MSC может запросить базовую станцию обеспечить освобождение канала, если вызов не проходит из-за радиопомех. BSS и MSC совместно осуществляют приоритетную передачу информации для некоторых категорий подвижных станций.
  • ТСЕ - транскодер, обеспечивает преобразование выходных сигналов канала передачи речи и данных MSC (64 кбит/с ИКМ) к виду, соответствующему рекомендациям GSM по радиоинтерфейсу (Рек. GSM 04.08). В соответствии с этими требованиями скорость передачи речи, представленной в цифровой форме, составляет 13 кбит/с. Этот канал передачи цифровых речевых сигналов называется "полноскоростным". Стандартом предусматривается в перспективе использование полускоростного речевого канала (скорость передачи 6,5 кбит/с).
  • Снижение скорости передачи обеспечивается применением специального речепреобразую-щего устройства, использующего линейное предикативное кодирование (LPC), долговременное предсказание (LTP), остаточное импульсное возбуждение (RPE - иногда называется RELP).
  • Транскодер обычно располагается вместе с MSC, тогда передача цифровых сообщений в направлении к контроллеру базовых станций - BSC ведется с добавлением к потоку со скоростью передачи 13 кбит/с, дополнительных битов (стафингование) до скорости передачи данных 16 кбит/с. Затем осуществляется уплотнение с кратностью 4 в стандартный канал 64 кбит/с. Так формируется определенная Рекомендациями GSM ЗО-канальная ИКМ линия, обеспечивающая передачу 120 речевых каналов. Шестнадцатый канал (64 кбит/с), "временное окно", выделяется отдельно для передачи информации сигнализации и часто содержит трафик SS N7 или LAPD. В другом канале (64 кбит/с) могут передаваться также пакеты данных, согласующиеся с протоколом X.25 МККТТ.
  • Таким образом, результирующая скорость передачи по указанному интерфейсу составляет 30х64 кбит/с + 64 кбит/с + 64 кбит/с = 2048 кбит/с.
  • Заключение.
  • В этой курсовой работе я описал технические характеристики и принцип работы АТС EWSD и основы построения сотовых систем связи с целью выяснить, можно ли использовать это автоматическую станцию в качестве узла коммутации мобильной связи.
  • Итак, во второй и третей главе я выяснил, что АТС работающая в качестве узла коммутации должна обладать по крайней мере двумя качествами:
  • Первое: быть способной обрабатывать  поток информации поступающий с базовой станции.
  • Второе: иметь возможности на программном и аппаратном уровне использовать алгоритмы «Хэндовера» и работать с базами  HLR и VLR.
  • Итак, было выяснено что поток информации между базовой станцией и узлом коммутации образует 2048 кбит/с.  Это – стандартные первичный канал, с которыми работают современные АТС и проблем с мультиплексирование точно не возникнет.
  • Вторая проблема решается на месте. Как было сказано в первой главе, программное обеспечение полностью соответствует МККТ, что говорит нам о том, что проблем с настройкой  и оптимизацией программного обеспечения под нужды сотовой связи не будет, все стандартизировано и понятно.
  • Между всем прочим, АТС EWSD современна (она хоть и была запущена в 80х, но проходила модернизации) и последние версии оснащаются мощным процессором, который способен обрабатывать до 40000000 вызовов, а сама система имеет пропускную способность до 100000 эрл.
  • Важным фактором также является параллельные коммутационные поля, что дает высокую степень надежности линии.
  • Подводя итог хочется сказать: что на сегодняшний день АТС EWSD отвечает всем необходимым требованиям для работы в качестве узла коммутации в мобильной связи и ее использование является хорошим выбором за счет ее надежности, небольших размеров и программному обеспечению, отвечающему требованиям МККТТ.
  • Приложения.
  • Приложение 1.
  • Структурная схема АТСЭ системы EWSD.
  • Приложение 2.
  • Структурная схема УУ цифрового коммутатора.
  • Приложение 3.
  • Структурная схема ГЛБ.
  • Приложение 4.
  • Структурная схема цифрового коммутационного поля.
  • Приложение 5.
  • Упрощенная схема КП на 65536 временных каналов.
  • Приложение 6.
  • Функциональная схема координатного процессора КПр-112.
  • Приложение 7.
  • Схема координатного процессора КПр-113.
  • Приложение 8.
  • Схема сотовой связи.
  • Приложение 9.
  • Схема сотовой связи со схемой LAC.

Информация о работе АТС EWSD в качестве коммутационного узла сотовой связи