Множественная регрессия

Автор работы: Пользователь скрыл имя, 09 Марта 2011 в 20:59, лекция

Описание работы

1.Условия применения метода и его ограничени
2.Мультиколлинеарность
3.Выбор типа многофакторной модели и факторных признаков
4.Системы показателей многофакторной корреляции и регрессии

Файлы: 1 файл

3.множественная регрессия.doc

— 178.00 Кб (Скачать файл)

     Оценка  деятельности на основе регрессионной  модели предполагает учет неравенства  условий производства, например, плодородия почв, финансового положения, наличия квалифицированных кадров и другие. Полностью учесть различие в условиях производства между предприятиями невозможно, так как любая модель учитывает не все факторы вариации урожайности. Оценка на основе модели производится сравнением фактического результата (урожайности) с тем результатом, который был бы достигнут предприятием при фактически имеющихся факторах и средней по совокупности их эффективности, выраженной коэффициентами условно чистой регрессии. Рассмотрим результаты расчета урожайности двух фирм (табл. 3). 

     Таблица 3. Фактический и расчетный результат  производства

Агрофирма Факторные признаки Урожайность, ц/га
x3 x5 x8 фактическая расчетная
1 2,22 13,4 0,40 17,6 17,7
2 1,74 40,3 0,60 16,2 17,6
Средняя по выборке 2,80 15,9 0,68 22,9 22,9
 

     Обе фирмы имеют худшие, чем в среднем  в выборке, значения основных факторов x3 и x8, а соответственно и значения расчетной урожайности ниже, чем средняя. Но при этом фирма 1 практически имеет ту же расчетную урожайность, что и фактически полученную. Нет основания считать эту фирму отстающей. Фирма 2 имеет фактическую урожайность ниже, чем расчетная по имеющимся факторам. Это означает, что либо у этой фирмы оказались хуже среднего неизвестные, не входящие в модель факторы, либо степень использования основных факторов – затрат на гектар и обеспеченность квалифицированными работниками ниже, чем в среднем.

     Прогнозирование на основе регрессионной модели исходит  из предположения, что факторы управляемы и могут принять то или иное плановое, ожидаемое значение, а прочие неизвестные условия сохранятся на среднем по совокупности уровне. Управляемость факторов не означает, что при прогнозе в модель можно подставлять любые их значения. Уравнение регрессии отражает те условия, которые существовали в совокупности, по данным которой уравнение получено. Если бы значения факторных признаков были в 2-3 раза более высокими, то нельзя утверждать, что коэффициенты условно чистой регрессии остались бы теми же.

     Поэтому рекомендуется при прогнозировании  по уравнению регрессии не выходить за пределы реально наблюдаемых  значений факторов в совокупности или  выходить за эти границы не более  чем на 10-15% средних величин. Не менее  важным требованием при прогнозировании является требование о соблюдении системности прогнозируемых значений факторов. Необходимо учитывать знак и тесноту связи между факторами. Например, если прогнозируется повысить степень обеспеченности квалифицированными работниками, то нельзя оставить без изменения, тем более снижать, прогнозируемую величину уровня оплаты труда. Планируя рост энерговооруженности, необходимо примерно в той же пропорции увеличить и фондовооруженность.

     Ориентируясь  на указанные в таблице 3 значения факторов, предположим, что прогнозируя урожайность, планируем затраты на гектар (x3) на уровне 3 тыс. руб., наличие трактористов-машинистов на 100 га пашни 0,8; оплату часа труда в размере 20 руб. в час. Подставляя эти значения в регрессионную модель получим точечный прогноз урожайности зерновых культур:

       

     Точечный  прогноз представляет собой математическое ожидание (среднюю) возможных с разной вероятностью значений прогнозируемого признака. Необходимо дополнить точечный прогноз расчетом доверительных границ с достаточно большой вероятностью. Для этого следует использовать величину средней квадратической ошибки аппроксимации, которая вычисляется по формуле:

        (33)

     Числитель подкоренного выражения – это  остаточная, не объясненная моделью сумма квадратов отклонений результативного признака, а знаменатель – число степеней свободы остаточной вариации. В нашем примере остаточная сумма квадратов отклонений равна 814,3. Имеем:

     

     Следовательно, с надежностью 0,95 прогнозируемая урожайность составит 25,4±4,16·2, или от 17,8 до 33,72 ц/га. Все эти расчеты относятся к прогнозам урожайности для отдельных агрофирм. Если речь идет о средней урожайности по совокупности 51 агрофирмы, то средняя ошибка средней арифметической величины равна среднему квадратическому отклонению, деленному на корень квадратный из объема выборки n, т.е. составит:

     

     Интерпретация этого значения ошибки прогноза средней  величины такова: если обеспечить 51 агрофирму  факторами x3, x5, x8 на уровнях соответственно 3, 20, 0,8, то будет получена средняя по совокупности урожайность 25,4±0,583 ц/га. С вероятностью 0,95 средняя по совокупности ожидаемая урожайность составит 25,4±0,583·2, или от 23,7 до 27,1 ц/га.

     Эконометрической  корреляционно-регрессионной моделью системы взаимосвязанных признаков изучаемой совокупности является такое уравнение регрессии, которое включает основные факторы, влияющие на вариацию результативного признака в совокупности, обладает высоким значением коэффициента детерминации (не ниже 0,5), надежными и правильно интерпретируемыми в соответствии (по знаку и по порядку величины) с теорией изучаемой системы коэффициентами регрессии, и в силу данных свойств пригодное для оценки деятельности единиц совокупности и для прогнозирования.

Информация о работе Множественная регрессия