Классификация математических моделей

Автор работы: Пользователь скрыл имя, 23 Декабря 2011 в 16:50, контрольная работа

Описание работы

Определение модели по А. А. Ляпунову: Моделирование — это опосредованное практическое или теоретическое исследование объекта, при котором непосредственно изучается не сам интересующий нас объект, а некоторая вспомогательная искусственная или естественная система (модель):
1) находящаяся в некотором объективном соответствии с познаваемым объектом;
2) способная замещать его в определенных отношениях;
3) дающая при её исследовании, в конечном счете, информацию о самом моделируемом объекте.

Содержание работы

1. Определение термина «Математическая модель»……………………………...3
2. Классификация математических моделей………………………………….5
3. Список литературы………………………………………………………………12

Файлы: 1 файл

Математические модели готово.doc

— 72.00 Кб (Скачать файл)

3. Математические модели, основанные на экстремальных принципах.

         Общеизвестна основополагающая роль принципа наибольшего действия в физике. Например, все известные системы уравнений, описывающие физические процессы, могут быть выведены из экстремальных принципов. Однако и в других науках экстремальные принципы играют существенную роль.

         Экстремальный принцип используется при аппроксимации эмпирических зависимостей аналитическим выражением. Графическое изображение такой зависимости и конкретный вид аналитического выражения, описывающего эту зависимость, определяют с помощью экстремального принципа, получившего название метода наименьших квадратов (метод Гаусса), суть которого заключается в следующем.

         Пусть проводится опыт, целью которого является исследование зависимости некоторой физической величины Y от физической величины X. Предполагается, что величины х и у связаны функциональной зависимостью

y=j(х).                              

         Вид этой зависимости и требуется определить из опыта. Предположим, что в результате опыта получили ряд экспериментальных точек и построили график зависимости у от х. Обычно экспериментальные точки на таком графике располагаются не совсем правильно, дают некоторый разброс, т. е. обнаруживают случайные отклонения от видимой общей закономерности. Эти отклонения связаны с неизбежными при всяком опыте ошибками измерения. Тогда возникает типичная для практики задача сглаживания экспериментальной зависимости.

         Для решения этой задачи обычно применяется расчетный метод, известный под названием метода наименьших квадратов (или метод Гаусса).

         Разумеется, перечисленные разновидности математических моделей не исчерпывают весь математический аппарат, применяемый в математическом моделировании. Особенно разнообразен математический аппарат теоретической физики и, в частности, ее важнейшего раздела - физики элементарных частиц.

Жёсткие и мягкие модели

         Гармонический осциллятор — пример так называемой «жёсткой» модели. Она получена в результате сильной идеализации реальной физической системы. Для решения вопроса о её применимости необходимо понять, насколько существенными являются факторы, которыми мы пренебрегли. Иными словами, нужно исследовать «мягкую» модель, получающуюся малым возмущением «жёсткой». Она может задаваться, например, следующим уравнением:

         Здесь  — некоторая функция, в которой может учитываться сила трения или зависимость коэффициента жёсткости пружины от степени её растяжения, — некоторый малый параметр. Явный вид функции f нас в данный момент не интересует. Если мы докажем, что поведение мягкой модели принципиально не отличается от поведения жёсткой (вне зависимости от явного вида возмущающих факторов, если они достаточно малы), задача сведется к исследованию жёсткой модели. В противном случае применение результатов, полученных при изучении жёсткой модели, потребует дополнительных исследований. Например, решением уравнения гармонического осциллятора являются функции вида , то есть колебания с постоянной амплитудой. Следует ли из этого, что реальный осциллятор будет бесконечно долго колебаться с постоянной амплитудой? Нет, поскольку рассматривая систему со сколь угодно малым трением (всегда присутствующим в реальной системе), мы получим затухающие колебания. Поведение системы качественно изменилось.

         Если система сохраняет свое качественное поведение при малом возмущении, говорят, что она структурно устойчива. Гармонический осциллятор — пример структурно-неустойчивой (негрубой) системы. Тем не менее, эту модель можно применять для изучения процессов на ограниченных промежутках времени.

Универсальность моделей

         Важнейшие математические модели  обычно обладают важным свойством  универсальности: принципиально разные реальные явления могут описываться одной и той же математической моделью. Таким образом, изучая одну математическую модель, мы изучаем сразу целый класс описываемых ею явлений. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Список  литературы.

1. Советов  Б. Я., Яковлев С. А., Моделирование  систем: Учебник для вузов —

    3-е изд., переработанное и дополненное — М.: Высшая школа, 2001 год.

2. Самарский А. А., Михайлов А. П. Математическое моделирование. Идеи.

    Методы. Примеры. — 2-е изд., исправленное — М.: Физматлит, 2001 год.

3. Мышкис А. Д., Элементы теории математических моделей. — 3-е изд.,

    исправленное — М.: КомКнига, 2007 год.

4. http://ru.wikipedia.org  

Информация о работе Классификация математических моделей