Эконометрическая модель

Автор работы: Пользователь скрыл имя, 06 Января 2011 в 15:18, реферат

Описание работы

Эконометрическая модель (econometric model) - это статистическая модель, которая является средством прогнозирования значений определенных переменных, называемых эндогенными переменными (endogenous variables). Для того чтобы сделать такие прогнозы, в качестве исходных данных используются значения других переменных, называемых экзогенными переменными (exogenous variables). Предположения о значениях таких переменных делаются пользователем модели. Например, в эконометрической модели уровень продаж автомашин в следующем году может быть привязан к уровню валового внутреннего продукта и процентных ставок.

Файлы: 1 файл

Эконометрическая модель.doc

— 69.00 Кб (Скачать файл)

Эконометрическая  модель (econometric model) - это статистическая модель, которая является средством прогнозирования значений определенных переменных, называемых эндогенными переменными (endogenous variables). Для того чтобы сделать такие прогнозы, в качестве исходных данных используются значения других переменных, называемых экзогенными переменными (exogenous variables). Предположения о значениях таких переменных делаются пользователем модели. Например, в эконометрической модели уровень продаж автомашин в следующем году может быть привязан к уровню валового внутреннего продукта и процентных ставок. Чтобы сделать прогноз относительно объема продаж автомобилей в следующем году (это эндогенная переменная), следует получить данные о величине валового внутреннего продукта и процентных ставок для будущего года, которые относятся к экзогенным переменным.

Эконометрическая  модель может представлять собой  как очень сложную систему, так  и простую формулу, которая может  быть легко подсчитана на калькуляторе. В любом случае она требует знаний по экономике и статистике. Сначала для определения соответствующих взаимосвязей применяются знания по экономике, а затем для оценки количественной природы взаимосвязей полученные за прошедший период данные обрабатываются с помощью статистических методов.

Некоторые инвестиционные организации используют широкомасштабные эконометрические модели, чтобы на основании прогнозов таких факторов, как федеральный бюджет, ожидаемые  потребительские расходы и планируемые  инвестиции в деловую сферу, сделать прогнозы относительно будущего уровня валового внутреннего продукта, инфляции и безработицы. Некоторые фирмы и некоммерческие организации специализируются на таких моделях, продавая инвестиционным институтам, финансистам корпораций, общественным агентствам и др. или прогнозы, или компьютерные программы.

Разработчики  таких широкомасштабных моделей  обычно предусматривают несколько "стандартных" прогнозов, основанных на определенном наборе экзогенных переменных. Некоторые модели содержат вероятность, с которой может осуществляться тот или иной прогноз. В других случаях пользователи могут включать сделанные ими самими предположения и анализировать полученные в результате этих предположений прогнозы.

Широкомасштабные  эконометрические модели такого типа насчитывают большое число уравнений, которые описывают большое число важных взаимосвязей. Несмотря на то что оценки таких взаимосвязей основаны на данных за прошедший период, эти оценки могут позволить (или не позволить) модели эффективно работать в будущем. Когда прогнозы оказываются неудачными, то иногда говорят, что лежащая в основе модели экономическая взаимосвязь претерпела структурные изменения. Однако неудача может явиться следствием влияния неучтенных в модели факторов. Та и другая ситуации требуют изменений или величин оценок, или самой концепции эконометрической модели, или же того и другого. Редко можно встретить пользователя, который бы не "ремонтировал" (или полностью "перестраивал") такую модель время от времени по мере накопления опыта. 

Модели  и элементы системного анализа

Необходимость использования метода моделирования  определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств. Процесс моделирования включает три элемента:

    1) субъект (исследователь);

    2) объект исследования;

    3) модель, опосредствующая  отношения познающего субъекта  и познаваемого объекта.

Любая модель замещает оригинал лишь в строго ограниченном смысле. Из этого следует, что для  одного объекта может быть построено  несколько специализированных моделей, концентрирующих внимание на определенных сторонах исследуемого объекта или же характеризующих объект с разной степенью детализации.

Моделирование  — циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах. В методологии моделирования, таким образом, заложены большие возможности саморазвития.

Эконометрика  существенно усовершенствовала построение моделей множественной регрессии , методы отделения существенных переменных от несущественных, определения достаточного количества переменных, выявления зависимости (интерколлинеарности ) переменных. Особенности экономических переменных и связей между ними привели к включению в уравнение регрессии переменных не только в первой, но и во второй степени и вообще более сильных нелинейностей, приводя тем самым к учету существенно нелинейных связей. Наконец, взаимодействие социально-экономических переменных может рассматриваться как самостоятельная компонента в уравнении регрессии.

Проникновение математики в экономическую науку  связано с преодолением значительных трудностей. В этом отчасти была повинна математика, развивающаяся  на протяжении нескольких веков в  основном в связи с потребностями  физики и техники. Но главные причины лежат все же в природе экономических процессов, в специфике экономической науки. Большинство объектов, изучаемых экономической наукой, может быть охарактеризовано кибернетическим понятием«сложная система» . Наиболее распространено понимание системы как совокупности элементов, находящихся во взаимодействии и образующих некоторую целостность, единство.

Важным качеством  любой системы является эмерджентность  — наличие таких свойств, которые не присущи ни одному из элементов, входящих в систему. Поэтому при изучении систем недостаточно пользоваться методом их расчленения на элементы с последующим изучением этих элементов в отдельности. Одна из трудностей экономических исследований в том, что почти не существует экономических объектов, которые можно было бы рассматривать как отдельные (внесистемные) элементы. Сложность системы определяется количеством входящих в нее элементов, связями между ними, а также взаимоотношениями между системой и средой.

Многочисленные  модели множественной регрессии  позволяли включать все большее количество так называемыхобъясняющих переменных , или факторов, в стандартной терминологии статистики. Эти независимые переменные, их влияние на результативный фактор и взаимодействия (связи) между ними, которые показывают, что факторы в действительности не являются полностью независимыми друг от друга, довольно часто не удается объединить в полноценную модель. Стремление использовать очень большое количество объясняющих переменных приводит зачастую к противоречивым результатам.

С другой стороны, наряду с отражением свойства оптимальности экономических переменных следовало также учитывать взаимодействие социально-экономических переменных , которое может рассматриваться как самостоятельная компонента в уравнении регрессии, например, в следующем простейшем уравнении регрессии:

y = a + bx + bz + bxz (1.1)

Правда, эффект взаимодействия (параметр b) может оказаться статистически незначимым.

Корреляционно-регрессионный анализ  описывает совместные изменения переменных, но это вовсе не означает обязательной причинной связи между этими переменными. Для выяснения истинного характера взаимосвязей между переменными необходимо изучение структуры модели и корреляционной связи, проблемы так называемой ложной корреляции , проблемы лага  (сдвиг во времени, индицирующий связь между показателями). В частности, при изучении динамики временных рядов выяснилось, что следует измерять корреляции не самих уровней (показателей) двух временных рядов , а первых разностей уровней для линейных основных тенденций развития (трендов).

Далее обнаружилось, что к временным рядам не следует  применять стандартные технологии корреляционного анализа, поскольку не выполняется основное условие применимости его — независимость наблюдений. Выполнение соответствующих модификаций и корректировка классического подхода корреляционного анализа статистики для создания адекватного метода исследования подобных задач знаменовали формирование так называемых высших методов статистики и собственно эконометрики.

Применении  Эконометрические модели

Статистические  и математические модели экономических  явлений и процессов определяются спецификой той или иной области  экономических исследований. Так, в экономике качества модели, на которых основаны статистические методы сертификации и управления качеством - модели статистического приемочного контроля, статистического контроля (статистического регулирования) технологических процессов (обычно с помощью контрольных карт Шухарта или кумулятивных контрольных карт), планирования экспериментов, оценки и контроля надежности и другие - используют как технические, так и экономические характеристики, а потому относятся к эконометрике, равно как и многие модели теории массового обслуживания (теории очередей). Экономический эффект только от использования статистического контроля в промышленности США оценивается как 0,8% валового национального продукта (20 миллиардов долларов в год), что существенно больше, чем от любого иного экономико-математического или эконометрического метода.

К эконометрике качества относятся многие публикации научно-технического журнал "Заводская  лаборатория (диагностика материалов)". Этот журнал посвящен аналитической химии, физическим, математическим и механическим методам исследования, а также сертификации материалов. Он создан в 1932 г. и адресован специалистам черной и цветной металлургии, химической промышленности и др. Кроме сотрудников центральных заводских лабораторий, служб качества, надежности и других заводских подразделений, он ориентирован в основном на работников прикладных научно-исследовательских организаций. Сейчас журнал базируется в Институте металлургии им.А.А.Байкова Российской академии наук. С 60-х годов в нем действует секция редколлегии "Математические методы исследования", отвечающая за публикацию статей по статистическим методам в промышленности, в частности, в метрологии, диагностике материалов, стандартизации, управлении качеством и сертификации. Технические и экономические вопросы обычно рассматриваются в неразрывном единстве. С рассматриваемой тематикой должен быть знаком каждый специалист по эконометрике, а также по экономике и организации производства.

Ввиду важности статистических методов в стандартизации и управления качеством в СССР с начала 70-х годов разрабатывались государственные стандарты по статистическим методам в рассматриваемой области. По мнению ряда специалистов, из-за неграмотности разработчиков государственные стандарты содержали многочисленные ошибки. Для анализа ситуации в 1985 г. была организована т.н. Рабочая группа по упорядочению системы стандартов по прикладной статистике и другим статистическим методам. В этот научный коллектив входили 66 научных работников и специалистов из различных отраслей народного хозяйства и вузов, в том числе более 20 докторов наук. Оказалось, что существенная часть стандартов по статистическим методам действительно содержала грубые ошибки. Основная часть ошибочных стандартов была отменена, некоторые действуют до сих пор. Затем с целью исправления положения был организован Всесоюзный центр по статистическим методам и информатике (ныне - Институт высоких статистических технологий и эконометрики МГТУ им. Н.Э. Баумана), который разработал около 30 компьютерных систем по современным статистическим методам управления качеством. Наибольшее распространение получила система НАДИС (НАДежность и ИСпытания), созданная под руководством проф. О.И.Тескина (МГТУ им. Н.Э.Баумана). Итоги описанного направления работ подведены в журнале "Заводская лаборатория" в статье [8].

Работы по эконометрическим моделям статистического контроля постоянно публикуются в "Заводской  лаборатории". Эти модели мы рассмотрим в главе 13. Рассмотрим здесь только одну конкретную рекомендацию, основанную на сравнении по экономическим показателям различных схем организации контроля и технического обслуживания. Этот подход приводит к принципиальному изменению технико-экономической политики при контроле качества. Он позволяет "снять" парадокс классической теории статистического контроля - чем выше достигнутый уровень качества, тем больше необходимый объем контроля. Предлагаемый выход состоит в переходе к расширению возможностей менеджера при выборе технической политики на основе учета экономических рисков. "Перекладывание" контроля на потребителя может быть экономически выгодно, если производитель организовал защиту от риска методом пополнения партий (путем включение запасных изделий) или путем развития технического обслуживания, позволяющего быстро заменять дефектное изделие.

Другой важный раздел эконометрики - теория и практика экспертных оценок. Экспертные оценки используют для решения ряда экономических  задач, например, выбора оптимального направления инвестиций, или наилучшего образца определенного вида продукции для организации массового  выпуска, или при прогнозировании развития экономической ситуации, или при распределении финансирования... Следовательно, используемые в теории экспертных оценок модели [ являются эконометрическими.

Информация о работе Эконометрическая модель