Автор работы: Пользователь скрыл имя, 23 Марта 2011 в 00:07, лекция
Современные социально-экономические процессы и явления зависят от большого количества факторов, их определяющих. В связи с этим квалифицированному специалисту необходимо не только иметь четкие представления об основных направлениях развития экономики, но и уметь учитывать сложное взаимосвязанное многообразие факторов, оказывающих существенное влияние на изучаемый процесс.
Регрессии, нелинейные по оцениваемым параметрам:
Построение уравнения регрессии сводится к оценке ее параметров. Для оценки параметров регрессий, линейных по параметрам, используют метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака y от теоретических минимальна, т.е.
Для линейных и нелинейных уравнений, приводимых к линейным, решается следующая система относительно a и b:
Можно воспользоваться готовыми формулами, которые вытекают из этой системы:
Тесноту
связи изучаемых явлений
и индекс корреляции ρxy – для линейной регрессии (0£ ρxy £1):
Оценку качества построенной модели даст коэффициент (индекс) детерминации, а также средняя ошибка аппроксимации.
Средняя ошибка аппроксимации – среднее отклонение расчетных значений от фактических: Допустимый предел значений – не более 8-10%.
Средний коэффициент эластичности показывает, на сколько процентов в среднем по совокупности изменится результат y от своей средней величины при изменении фактора x на 1% от своего среднего значения:
Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной:
где - общая сумма квадратов отклонений;
- сумма квадратов отклонений, обусловленная регрессией («объясненная» или «факторная»);
- остаточная сумма квадратов отклонений.
Долю
дисперсии, объясняемую регрессией,
в общей дисперсии
Коэффициент детерминации – квадрат коэффициента или индекса корреляции.
F-тест – оценивание качества уравнения регрессии – состоит в проверке гипотезы H0 о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтабл значений F-критерия Фишера. Fфакт определяется из соотношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:
где n – число единиц совокупности; m – число параметров при переменных x.
Fтабл – это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости a. Уровень значимости a – вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно a принимается равной 0,05 или 0,01.
Если Fтабл< Fфакт, то H0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если Fтабл> Fфакт, то H0 – гипотеза не отклоняется и признается статистическая незначимость, надежность уравнения регрессии.
Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t-критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза H0 о случайной природе показателей, т.е. о незначимом их отличии от нуля. Оценка значимости коэффициентов регрессии и корреляции с помощью t-критерия Стьюдента проводится путем сопоставления их значений с величиной случайной ошибки:
Случайные ошибки параметров линейной регрессии и коэффициента корреляции определяются по формулам:
Если tтабл< tфак, то H0 отклоняется, т.е. a, b и rxy не случайно отличаются от нуля и сформировались под влиянием систематически действующего фактора x. Если tтабл> tфак, гипотеза H0 не отклоняется и признается случайная природа формирования a, b или rxy.
Для расчета доверительного интервала определяем предельную ошибку D для каждого показателя:
Формулы для расчета доверительных интервалов имеют следующий вид:
Если в границы доверительного интервала попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается нулевым, так как он не может одновременно принимать и положительное, и отрицательное значения.
Прогнозное значение yp определяется путем подстановки в уравнение регрессии соответствующего (прогнозного) xp. Вычисляется средняя стандартная ошибка прогноза где , и строится доверительный интервал прогноза:
где
Информация о работе Задачи эконометрики в области социально-экономических исследований