Загрязнение воздуха

Автор работы: Пользователь скрыл имя, 15 Декабря 2010 в 09:21, реферат

Описание работы

Химические соединения, источник которых находится на уровне земли, быстро смешиваются с воздухом нижних слоев атмосферы (тропосферы). Они называются первичными загрязняющими веществами. Некоторые из них вступают в химические реакции с другими загрязнителями или с основными компонентами воздуха (кислородом, азотом и водяным паром), образуя вторичные загрязняющие вещества. В результате наблюдаются такие явления, как фотохимический смог, кислотные дожди и образование озона в приземном слое атмосферы. Источником энергии для этих реакций служит солнечная радиация. Вторичные загрязнители - содержащиеся в атмосфере фотохимические окислители и кислоты - представляют главную опасность для здоровья человека и глобальных изменений окружающей среды.

Файлы: 1 файл

ЗАГРЯЗНЕНИЕ ВОЗДУХА.doc

— 336.50 Кб (Скачать файл)

Подогрев газов  до необходимых температур можно  осуществлять за счет ввода горячих  дымовых газов или с помощью  электроподогревателя. После прохождения  слоя катализатора очищенные газы выбрасываются  в атмосферу, что требует значительных энергозатрат. Добиться снижения энергозатрат можно, если тепло отходящих газов использовать для нагревания газов, поступающих в очистку. Для нагрева служат обычно рекуперативные трубчатые теплообменники.

При определенных условиях, когда концентрация горючих примесей в отходящих газах превышает 4-5 г/м³, осуществление процесса по схеме с теплообменником позволяет обойтись без дополнительных затрат.

Такие аппараты могут эффективно работать только при  постоянных концентрациях (расходах) или  при использовании совершенных систем автоматического управления процессом.

Эти трудности  удается преодолеть, проводя газоочистку  в нестационарном режиме.

2. Нестационарный метод ( реверс-процесс).

Реверс-процесс  предусматривает периодическое  изменение направлений фильтрации газовой смеси в слое катализатора с помощью специальных клапанов. Процесс протекаетследующим образом. Слой катализатора предварительно нагревают до температуры, при которой каталитический процесс протекает с высокой скоростью. После этого в аппарат подают очищенный газ с низкой температурой, при которой скорость химического превращения пренебрежимо мала. От прямого контакта с твердым материалом газ нагревается, и в слое катализатора начинает с заметной скоростью идти каталитическая реакция. Слой твердого материала (катализатора), отдавая тепло газу, постепенно охлаждается до температуры, равной температуре газа на входе. Поскольку в ходе реакции выделяется тепло, температура в слое может превышать температуру начального разогрева. В реакторе формируется тепловая волна, которая перемещается в направлении фильтрации реакционной смеси, т.е. в направлении выхода из слоя. Периодическое переключение направления подачи газа на противоположное позволяет удержать тепловую волну в пределах слоя как угодно долго.

Преимущество  этого метода в устойчивости работы при колебаниях концентраций горючих  смесей и отсутствие теплообменников.

Основным направлением развития термокаталитических методов  является создание дешевых катализаторов, эффективно работающих при низких температурах и устойчивых к различным ядам, а также разработка энергосберегающих технологических процессов с малыми капитальными затратами на оборудование. Наиболее массовое применение термокаталитические методы находят при очистке газов от оксидов азота, обезвреживании и утилизации разнообразных сернистых соединений, обезвреживания органических соединений и СО.

Для концентраций ниже 1 г/м³ и больших объемов очищаемых  газов использование термокаталитического метода требует высоких энергозатрат, а также большого количества катализатора.

Озонные методы.

Озонные методы применяют для обезвреживания дымовых  газов от SO2(NOx) и дезодорации газовых  выбросов промышленных предприятий. Введение озона ускоряет реакции окисление NO до NO2 и SO2 до SO3. После образования NO2 и SO3 в дымовые газы вводят аммиак и выделяют смесь образовавшихся комплексных удобрений (сульфата и нитрата аммония). Время контакта газа с озоном, необходимое для очистки от SO2 (80-90%) и NOx (70-80%)составляет 0,4 – 0,9 сек. Энергозатраты на очистку газов озонным методом оценивают в 4-4,5% от эквивалентной мощности энергоблока, что является, по-видимому, основной причиной, сдерживающей промышленное применение данного метода.

Применение озона  для дезодорации газовых выбросов основано на окислительном разложении дурно пахнущих веществ. В одной группе методов озон вводят непосредственно в очищаемые газы, в другой газы промывают предварительно озонированной водой. Применяют также последующее пропускание озонированного газа через слой активированного угля или подачуего на катализатор. При вводе озона и последующем пропускании газа через катализатор температура превращения таких веществ как амины, ацетальдегид, сероводород и др.понижается до 60-80 &degC. В качестве катализатора используют как Pt/Al2O3, так и оксиды меди, кобальта, железа на носителе. Основное применение озонные методы дезодорации находят при очистке газов, которые выделяются при переработке сырья животного происхождения на мясо- (жиро-)комбинатах и в быту.

Биохимические методы.

Биохимические методы очистки основаны на способности микроорганизмов разрушать и преобразовывать различные соединения. Разложение веществ происходит под действием ферментов, вырабатываемых микроорганизмами в среде очищаемых газов. При частом изменении состава газа микроорганизмы не успевают адаптироваться для выработки новых ферментов, и степень разрушения вредных примесей становится неполной. Поэтому биохимические системы более всего пригодны для очистки газов постоянного состава.

Биохимическую газоочистку проводят либо в биофильтрах, либо в биоскрубберах. В биофильтрах очищаемый газ пропускают через слой насадки, орошаемый водой, которая создает влажность, достаточную для поддержания жизнедеятельности микроорганизмов. Поверхность насадки покрыта биологически активной биопленкой (БП) из микроорганизмов.

Микроорганизмы  БП в процессе своей жизнедеятельности  поглощают и разрушают содержащиеся в газовой среде вещества, в  результате чего происходит рост их массы. Эффективность очистки в значительной мере определяется массопереносом из газовой фазы в БП и равномерным распределением газа в слое насадки. Такого рода фильтры используют, например, для дезодорации воздуха. В этом случае очищаемый газовый поток фильтруется в условиях прямотока с орошаемой жидкостью, содержащей питательные вещества. После фильтра жидкость поступает в отстойники и далее вновь подается на орошение.

В настоящее  время биофильтры используют для  очистки отходящих газов от аммиака, фенола, крезола, формальдегида, органических растворителей покрасочных и сушильных линий, сероводорода, метилмеркаптана и других сероорганических соединений.

К недостаткам  биохимических методов следует  отнести:

  • низкую скорость биохимических реакций, что увеличивает габариты оборудования;
  • специфичность (высокую избирательность) штаммов микроорганизмов, что затрудняет переработку многокомпонентных смесей;
  • трудоемкость переработки смесей переменного состава.

Плазмохимические  методы.

Плазмохимический  метод основан на пропускании  через высоковольтный разряд воздушной  смеси с вредными примесями. Используют, как правило, озонаторы на основе барьерных,коронных или скользящих разрядов, либо импульсные высокочастотные разряды на электрофильтрах. Проходящий низкотемпературную плазму воздух с примесями подвергается бомбардировке электронами и ионами. В результате в газовой среде образуется атомарный кислород, озон, гидроксильные группы, возбуждённые молекулы и атомы, которые и участвуют в плазмохимических реакциях с вредными примесями. Основные направления по применению данного метода идут по удалению SO2, NOx и органических соединений. Использование аммиака, при нейтрализации SO2 и NOx, дает на выходе после реактора порошкообразные удобрения (NH4)2SO4 и NH4NH3, которые фильтруются.

Недостатком данного  метода являются:

  • недостаточно полное разложение вредных веществ до воды и углекислого газа, в случае окисления органических компонентов, при приемлимых энергиях разряда
  • наличие остаточного озона, который необходимо разлагать термически либо каталитически
  • существенная зависимость от концентрации пыли при использовании озонаторов с применением барьерного разряда.

Плазмокаталитический  метод

Это довольно новый  способ очистки, который использует два известных метода – плазмохимический и каталитический. Установки, работающие на основе этого метода, состоят из двух ступеней. Первая – это плазмохимический реактор (озонатор), вторая - каталитический реактор. Газообразные загрязнители, проходя зону высоковольтного разряда в газоразрядных ячейках и взаимодействуя с продуктами электросинтеза, разрушаются и переходят в безвредные соединения, вплоть до CO2 и H2O. Глубина конверсии (очистки) зависит от величины удельной энергии, выделяющейся в зоне реакции. После плазмохимического реактора воздух подвергается финишной тонкой очистке в каталитическом реакторе. Синтезируемый в газовом разряде плазмохимического реактора озон попадает на катализатор, где сразу распадается на активный атомарный и молекулярный кислород. Остатки загрязняющих веществ (активные радикалы, возбужденные атомы и молекулы), не уничтоженные в плазмохимическом реакторе, разрушаются на катализаторе благодаря глубокому окислению кислородом.

Преимуществом этого метода являются использование  каталитических реакций при температурах, более низких (40-100 &degC), чем при  термокаталитическом методе, что приводит к увеличению срока службы катализаторов, а также к меньшим энергозатратам (при концентрациях вредных веществ до 0,5 г/м&sup3.).

Недостатками  данного метода являются:

  • большая зависимость от концентрации пыли, необходимость предварительной очистки до концентрации 3-5 мг/м³,
  • при больших концентрациях вредных веществ(свыше 1 г/м³) стоимость оборудования и эксплуатационные расходы превышают соответствующие затраты в сравнении с термокаталитическим методом

Фотокаталитический  метод.

Сейчас широко изучается и развивается фотокаталитический метод окисления органических соединений. В основном при этом используются катализаторы на основе TiO2, которые облучаются ультрафиолетом. Известны бытовые очистители воздуха японской фирмы «Daikin», использующие этот метод. Недостатком метода является засорение катализатора продуктами реакции. Для решения этой задачи используют введение в очищаемую смесь озона, однако данная технология применима для ограниченного состава органических соединений и при небольших концентрациях.

 

  Естественный метод: Озеленение городов.

Искусственные зеленые насаждения (парки, сады, скверы), а также сохранившиеся природные  комплексы типа городских лесов  и лугов являются важным компонентом  городской территории. Крупные зеленые  массивы оказывают определенное влияние на климат городов: регулируют количество осадков, служат резервуарами чистого воздуха, обогащая атмосферу кислородом за счет фотосинтеза, предохраняют почвенный покров от водной и ветровой эрозии, препятствуют оврагообразованию, предохраняют водные источники от высыхания и загрязнения. Они положительно влияют на тепловой и радиационный режимы. Так, температура воздуха в лесах Московского региона в летние дни на 8-10° С ниже, чем на открытых местах. В результате неравномерности нагревания зеленого массива и открытых территорий нагретый воздух открытых территорий устремляется вверх, а на его место притекает более холодный воздух от зеленого массива, создавая горизонтальные потоки воздуха и способствуя проветриванию территории.

В настоящее время площадь зеленых насаждений в крупнейших городах России находится в очень широких пределах: от 51% общей площади в границах городской черты в Уфе до 2% - в Мурманске (табл.30). Оптимальное соотношение по экологическим показателям площади крупнейших городов к площади лесопаркового защитного пояса должно быть не менее 1:5, тогда как в Лондоне, Париже и Вашингтоне это соотношение составляет 1:10 и выше (в Москве 1:1,5) [31].Одним га городских зеленых насаждений выделяется в день до 200 кг кислорода. Наибольшей продуктивностью кислорода обладает тополь. Значительной улавливающей способностью к аэрозолям и пыли обладают вяз, шелковица, рябина, сирень, бузина. Кроны елей на 1 га задерживают в год до 32 т пыли, сосны - до 36 т, дуба - до 56 т, бука - до 63 т. В течение вегетационного периода деревья уменьшают запыленность воздуха на 42 %, в безлиственный период - на 37%. Наилучшие пылезащитные свойства у вяза и сирени. В радиусе до 500 м от источника загрязнения рекомендуются для посадок газоустойчивые породы, а именно тополь канадский, тополь бальзамический, липа мелколистная, клен ясенелистный, ива белая, можжевельник обыкновенный, бузина красная, жимолость.

Зеленые легкие города 
Благоустройством и озеленением наших улиц, парков и дворов занимается специальная Комиссия по охране зеленых насаждений в городе Рязани. В течение первого полугодия члены комиссии 208 раз выезжали для обследования зеленых насаждений. По результатам было подготовлено 122 распоряжения на вынужденный снос зеленых насаждений. А всего за полгода спилили и выкорчевали 863 аварийных, старовозрастных дерева – они угрожали жизни и здоровью жителей нашего города. 
Вместе с тем, весной этого года на территории Рязани было посажено 1559 новых деревьев и 1379 кустарников. Жители города могли заказать саженцы для озеленения собственных придомовых участков. 
В течение полугода Комиссией по охране зеленых насаждений в городе Рязани зафиксировано девять случаев незаконного сноса зеленых насаждений. Согласно составленным расчетам, сумма нанесенного ущерба составила 2,141 миллиона рублей. Материалы по данным фактам направлены в Управление внутренних дел по городу Рязани для установления виновных лиц и взыскания с них штрафа в размере причиненного ущерба.

Информация о работе Загрязнение воздуха