Влияние двигателей внутреннего сгорания и экологическую ситуацию

Автор работы: Пользователь скрыл имя, 03 Декабря 2009 в 16:10, Не определен

Описание работы

Реферат

Файлы: 1 файл

ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ И ПРОБЛЕМЫ ЭКОЛОГИИ.doc

— 205.00 Кб (Скачать файл)

Рис. 1.4. Термический нейтрализатор

Чтобы предотвратить  падение температуры выпускных  газов в результате теплоотдачи  в стенки, выпускной трубопровод  и нейтрализатор покрывают тепловой изоляцией, устанавливают тепловые экраны в выпускных каналах, размещают нейтрализатор по возможности ближе к двигателю. Несмотря на это, для прогрева термического нейтрализатора после пуска двигателя требуется значительное время. Для сокращения этого времени повышают температуру выпускных газов, что достигается обогащением горючей смеси и уменьшением угла опережения зажигания, хотя и то, и другое повышает расход топлива. К подобным мерам прибегают для поддержания стабильного пламени на переходных режимах работы двигателя. Уменьшению времени до начала эффективного окисления СН и СО способствует также жаровая вставка.

Каталитические  нейтрализаторы – устройства, содержащие в себе вещества, ускоряющие реакции, – катализаторы. Каталитические нейтрализаторы могут быть “однокомпонентными” “двухкомпонентными” и “трехкомпонентными”.

Однокомпонентные  и двухкомпонентные нейтрализаторы окислительного типа дожигают (доокисляют) СО (однокомпонентные) и СН (двухкомпонентные).

2СО + О2 = 2СО2 (при 250–300°С ).

СmНn + (m + n/4)О2 = mСО2 + n/2Н2О (свыше 400°С ).

Нейтрализатор представляет собой корпус из нержавеющей стали, включенный в систему выпуска. В корпусе располагается блок носителя активного элемента. Первые нейтрализаторы заполнялись металлическими шариками, покрытыми тонким слоем катализатора (см. рис. 1.5). 

Рис. 1.5. Устройство каталитического нейтрализатора

В качестве активного  вещества использовались: алюминий, медь, хром, никель. Основными недостатками нейтрализаторов первых поколений были низкая эффективность и малый срок службы. Наиболее стойким к “отравляющему” воздействию серных, кремнийорганических и прочих соединений, образующихся вследствие сгорания содержащихся в цилиндре двигателя топлива и масла, оказались каталитические нейтрализаторы на основе благородных металлов – платины и палладия.

Носителем активного  вещества в таких нейтрализаторах  служит спецкерамика – монолит с  множеством продольных сот-ячеек. На поверхность сот нанесена специальная шероховатая подложка. Это позволяет увеличить эффективную площадь контакта покрытия с выхлопными газами до ~20 тыс. м2. Количество благородных металлов, нанесенных на подложку на этой площади, составляет 2–3 грамма, что позволяет организовать массовое производство относительно недорогих изделий.

Керамика выдерживает  температуру до 800–850 °С. Неисправности системы питания (затрудненный пуск) и длительная работа на переобогащенной рабочей смеси приводят к тому, что избыточное топливо будет сгорать в нейтрализаторе. Это приводит к оплавлению сот и выходу нейтрализатора из строя. Сегодня в качестве носителей каталитического слоя применяют металлические соты. Это позволяет увеличить площадь рабочей поверхности, получить меньшее противодавление, ускорить разогрев нейтрализатора до рабочей температуры и расширить температурный диапазон до 1000–1050 °С.

Каталитические  нейтрализаторы с  восстановительной  средой, или трехкомпонентные нейтрализаторы, используются в системах выпуска отработавших газов, как для снижения выбросов СО и СН, так и для снижения выбросов окислов азота. Каталитический слой нейтрализатора содержит, кроме платины и палладия, редкоземельный элемент родий. В результате химических реакций на поверхности разогретого до 600–800 °С катализатора СО, СН, Nоx, содержащиеся в отработавших газах, превращаются в H2O, СО2, N2:

2NO + 2СО  = N2 + 2СО2.

2NO + 2Н2 = N2 + 2Н2О.

Эффективность трехкомпонентного каталитического  нейтрализатора достигает в реальных условиях эксплуатации 90%, но лишь при  условии, что состав горючей смеси  отличается от стехиометрического не более чем на 1%.

Из-за изменения  параметров двигателя вследствие его  износа, работы на нестационарных режимах, дрейфа настроек систем питания поддерживать стехиометрический состав горючей  смеси только за счет конструкции  карбюраторов или инжекторов не представляется возможным. Необходима обратная связь, которая оценивала бы состав топливовоздушной смеси, поступающей в цилиндры двигателя.

На сегодняшний  день наибольшее распространение получила система обратной связи с использованием так называемого датчика кислорода (лямбда-зонда) на основе циркониевой керамики ZrO2 (рис. 1.6).

Чувствительным  элементом лямбда-зонда является циркониевый колпачок 2. Внутренняя и внешняя поверхности колпачка покрыты тонкими слоями из платинородиевого сплава, которые выполняют роль внешнего 3 и внутреннего 4 электродов. С помощью резьбовой части 1 датчик устанавливается в выпускной тракт. При этом внешний электрод омывается обработавшими газами, а внутренний – атмосферным воздухом.

Рис. 1.6. Конструкция датчика кислорода

Двуокись циркония при температурах свыше 350°С  приобретает свойство электролита, а датчик становится гальваническим элементом. Величина ЭДС на электродах датчика определяется соотношением парциальных давлений кислорода на внутренней и внешней сторонах чувствительного элемента. При наличии свободного кислорода в отработавших газах датчик вырабатывает ЭДС порядка 0.1 В. При отсутствии в отработавших газах свободного кислорода ЭДС практически скачком возрастает до 0.9 В.

Управление составом смеси происходит после прогрева датчика до рабочих температур. Состав смеси поддерживается изменением количества подаваемого в цилиндры двигателя  топлива на границе перехода ЭДС зонда с низкого на высокий уровень напряжения. Для уменьшения времени выхода на рабочий режим применяют датчики с электроподогревом.

Основными недостатками систем с обратной связью и трехкомпонентным каталитическим нейтрализатором являются: невозможность работы двигателя на этилированном топливе, достаточно низкий ресурс нейтрализатора и лямбда-зонда (порядка 80000 км) и увеличение сопротивления выпускной системы. 
 
 
 
 
 
 
 
 
 
 
 

Список  литературы

  1. Вырубов Д. Н. Двигатели внутреннего сгорания: теория поршневых и комбинированных двигателей / Д. Н. Вырубов и др. М.: Машиностроение, 1983.
  2. Автомобильные и тракторные двигатели. (Теория, системы питания, конструкции и расчет)/ Под ред. И. М. Ленина. М.: Высш. шк., 1969.
  3. Автомобильные и тракторные двигатели: В 2 ч. Конструкция и расчет двигателей   / Под ред. И. М. Ленина. 2-е изд., доп. и перераб. М.: Высш. шк., 1976.
  4. Двигатели внутреннего сгорания: Устройство и работа поршневых и комбинированных двигателей / Под ред. А. С. Орлина, М. Г. Круглова. 3-е изд., перераб. и доп. М.: Машиностроение, 1980.
  5. Архангельский В. М. Автомобильные двигатели / В. М. Архангельский. М.: Машиностроение, 1973.
  6. Колчин А. И. Расчет автомобильных и тракторных двигателей / А. И. Колчин, В. П. Демидов. М.: Высш. шк., 1971.
  7. Двигатели внутреннего сгорания / Под ред. д-ра техн. наук проф. В. Н. Луканина. М.: Высш. школа, 1985.
  8. Хачиян А. С. Двигатели внутреннего сгорания / А. С. Хачиян и др. М.: Высш. шк., 1985.
  9. Росс Твег. Системы впрыска бензина. Устройство, обслуживание, ремонт: Практ. пособие / Росс Твег. М.: Издательство “За рулем", 1998.

Информация о работе Влияние двигателей внутреннего сгорания и экологическую ситуацию