Утилизация, переработка бытовых и промышленных отходов

Автор работы: Пользователь скрыл имя, 19 Октября 2010 в 11:27, Не определен

Описание работы

В данном реферате рассматривается вопрос утилизации и переработки промышленных и бытовых отходов

Файлы: 1 файл

Реферат.doc

— 161.50 Кб (Скачать файл)

3.1. Жидкофазное  окисление 

Жидкофазное окисление токсичных отходов  производства используется для обезвреживания жидких отходов и осадков сточных  вод. Суть его заключается в окислении  кислородом органических и элементоорганических примесей сточных вод при температуре 150 – 350° С и при давлении 2 – 28 МПа [4, 23].

Интенсивность окисления в жидкой фазе способствует высокая концентрация растворенного  в воде кислорода, значительно возрастающая при высоком давлении. В зависимости от давления, температуры, количества примесей и кислорода, продолжительности процесса органические вещества окисляются с образованием органических кислот (в основном CH3COOH и HCOOH) или с образованием CO2, H2O и N2 [4].

Элементоорганические соединения в щелочной среде окисляются с образованием водных растворов хлоридов, бромидов, фосфатов, нитратов и оксидов металлов, а при окислении азотосодержащих веществ, помимо нитратов, образуется значительное количество аммонийного азота [23].

Для жидкоплазменного окисления требуется меньше энергетических затрат, чем другие методы, но является более дорогостоящим, кроме этого к недостаткам метода относится высокая коррозионность процесса, образование накипи на поверхности нагрева, неполное окисление некоторых веществ, невозможность окисления сточных вод с высокой теплотой сгорания [4].

Применение  метода целесообразно при первичной  переработке отходов. 

3.2. Гетерогенный  катализ 

Метод применим для обезвреживания газообразных и  жидких отходов.

Существуют три разновидности гетерогенного катализа промышленных отходов.

Термокаталитическое окисление можно использовать для  обезвреживания газообразных отходов  с низким содержанием горючих  примесей. Процесс окисления на катализаторах  осуществляется при температурах меньших, чем температура самовоспламенения горючих составляющих газа. В зависимости от природы примесей и активности катализаторов окисление происходит при температуре 250 - 400° С и в установках различных размеров [4].

В термокаталитических  реакторах успешно окисляются CO, H2, углеводороды (УВ), NH3, фенолы, альдегиды, кетоны, пары смол, канцерогенные и др. соединения с образованием CO2, H2O, N2. Степень окисления вредных веществ 98-99.9%. Для увеличения удельной поверхности катализации используется пористые керамические устройства из Al2O3 и оксидов других металлов, тоже обладающих каталитической активностью [24].

Современные промышленные катализаторы глубокого  окисления при температуре до 600-800° С не следует применять при большом содержании пыли и водяных паров. Неприменим метод и для переработки отходов, содержащих высококипящие и высокомолекулярные соединения, вследствие неполноты окисления и забивания поверхности катализаторов. Нельзя применять термокаталитическое окисление при наличии в отходах даже в небольших количествах P, Pb, As, Hg, S, галогенов и их соединений, так как это приводит к дезактивации и разрушению катализаторов [4].

Термокаталитическое восстановление используется для обезвреживания газообразных отходов, включающих в  себя нитрозные газы – содержащие NOX [4].

Профазное каталитическое окисление применимо  для перевода органических примесей сточных вод в парогазовую  фазу с последующим окислением кислородом. При содержании в сточных водах  неорганических и нелетучих веществ  возможно дополнение данного процесса огневым методом или другими видами обезвреживания отходов [4].

В целом  методы гетерогенного катализа нецелесообразно  использовать в качестве самостоятельного способа обезвреживания токсичных  отходов, а только как отдельную  ступень в общем, технологическом цикле. 

3.3 Пиролиз  промышленных отходов 

Существует  два различных типа пиролиза токсичных  промышленных отходов. 

3.3.1 Окислительный  пиролиз

Окислительный пиролиз – процесс термического разложения промышленных отходов при  их частичном сжигании или непосредственном контакте с продуктами сгорания топлива. Данный метод применим для обезвреживания многих отходов, в том числе «неудобных» для сжигания или газификации: вязких, пастообразных отходов, влажных осадков, пластмасс, шламов с большим содержанием золы, загрязненную мазутом, маслами и другими соединениями землю, сильно пылящих отходов. Кроме этого, окислительному пиролизу могут подвергаться отходы, содержащие металлы и их соли, которые плавятся и возгарают при нормальных температурах сжигания, отработанные шины, кабели в измельченном состоянии, автомобильный скрап и др.

Метод окислительного пиролиза является перспективным направлением ликвидации твердых промышленных отходов  и сточных вод. 

3.3.2 Сухой  пиролиз

Этот метод  термической обработки отходов обеспечивает их высокоэффективное обезвреживание и использование в качестве топлива и химического сырья, что способствует созданию малоотходных и безотходных технологий и рациональному использованию природных ресурсов.

Сухой пиролиз  – процесс термического разложения без доступа кислорода.

В результате образуется пиролизный газ с высокой  теплотой сгорания, жидкий продукт  и твердый углеродистый остаток.

В зависимости  от температуры, при которой протекает пиролиз, различается [4]:

1. Низкотемпературный пиролиз или полукоксование (450 - 550° С).

Данному виду пиролиза характерны максимальный выход  жидких и твердых (полукокс) остатков и минимальный выход пиролизного  газа с максимальной теплотой сгорания. Метод подходит для получения  первичной смолы – ценного жидкого топлива, и для переработки некондиционного каучука в мономеры, являющиеся сырьем для вторичного создания каучука. Полукокс можно использовать в качестве энергетического и бытового топлива.

2. Среднетемпературный  пиролиз или среднетемпературное коксование (до 800° С) дает выход большего количества газа с меньшей теплотой сгорания и меньшего количества жидкого остатка и кокса.

3. Высокотемпературный  пиролиз или коксование (900 - 1050°  С). Здесь наблюдается минимальный  выход жидких и твердых продуктов и максимальная выработка газа с минимальной теплотой сгорания – высококачественного горючего, годного для далеких транспортировок.

В результате уменьшается количество смолы и  содержание в ней ценных легких фракций.

Метод сухого пиролиза получает все большее распространение и является одним из самых перспективных способов утилизации твердых органических отходов и выделении ценных компонентов из них на современном этапе развития науки и техники. 

3.4 Огневая  переработка 

В основу огневого метода положен процесс высокотемпературного разложения и окисления токсичных компонентов отходов с образованием практически нетоксичных или малотоксичных дымовых газов и золы. С использованием данного метода возможно получение ценных продуктов: отбеливающей земли, активированного угля, извести, соды и др. материалов.

В зависимости  от химического состава отходов  дымовые газы могут содержать SOХ, P, N2, H2SO4, HCl, соли щелочных и щелочноземельных элементов, инертные газы.

Огневой метод  переработки токсичных промышленных отходов классифицируется в зависимости от типа отходов и способам обезвреживания [4]:

1. Сжигание  отходов, способных гореть самостоятельно  – наиболее простой способ; горение  происходит при температурах  не ниже 1200 - 1300° С. (следует отметить, что данный способ не является целесообразным ввиду некоторой (большей или меньшей) ценности горючих отходов и возможности их использования в данное время или в будущем).

2. Огневой  окислительный метод обезвреживания  негорючих отходов – сложный  физико-химический процесс, состоящий из различных физических и химических стадий. Огневое окисление применимо в большей степени по отношению к твердым и пастообразным отходам.

3. Огневой  восстановительный метод используется  для уничтожения токсичных отходов  без получения каких-либо побочных продуктов, пригодных для дальнейшего использования в качестве сырья или товарных продуктов. В результате образуются безвредные дымовые газы и стерильный шлак, сбрасываемый в отвал. Так можно обезвреживать газообразные и твердые выбросы, бытовые отходы и некоторые другие.

4. Огневая  регенерация предназначена для  извлечения из отходов какого  либо производства реагентов,  используемых в этом производстве, или восстановления свойств отработанных  реагентов или материалов. Эта  разновидность огневого обезвреживания обеспечивает не только природоохранные, но и ресурсосберегающие цели.

Для достижения требуемой санитарно-гигиенической  полноты обезвреживания отходов  необходимо, как правило, экспериментальное  определение оптимальных температур, продолжительности процесса, коэффициента избытка кислорода в камере горения, равномерности подачи отходов, топлива и кислорода [1].

Протекание  процесса обезвреживания в неоптимальных  условиях приводит к появлению компонентов в продуктах сгорания и, в первую очередь, в дымовых газах.

При сжигании на свалках пластмасс, синтетических  волокон, хлороуглеводородов в дымовых  газах могут образовываться токсичные вещества: CO, бенз-а-пирен, фосген, диоксины.

Сибирским филиалом НПО «Техэнергохимпром» разработаны камерные, барабанные, циклонные, комбинированные печи, используемые в зависимости от состава, физико-химических свойств и агрегатного состояния отходов.

Дополнительно был разработан дожигатель, предназначенный для обезвреживания газовых выбросов, содержащих органические вещества с концентрацией не более 10 г/м3. После полного обезвреживания содержание в выбросах СО не более 40 мг/м3, NOХ не более 10 мг/м3[1].

По мнению авторов [15] огневое обезвреживание (чисто термическое или с применением катализаторов) промышленных отходов приводит к уничтожению органических веществ, которые могли бы явиться ценным сырьем целевых продуктов. 

3.5 Переработка  и обезвреживание отходов с  применением плазмы 

Для получения  высокой степени разложения токсичных отходов, особенно галоидосодержащих, конструкция сжигающей печи должна обеспечивать необходимую продолжительность пребывания в зоне горения, тщательное смешение при определенной температуре исходных реагентов с кислородом, количество которого также регулируется. Для подавления образования галогенов и полного их перевода в галогеноводороды необходим избыток воды и минимум кислорода, последнее вызывает образование большого количества сажи. При разложении хлорорганических продуктов снижение температуры ведет к образованию высокотоксичных и устойчивых веществ – диоксинов [7, 26]. Как утверждает автор работы [15], недостатки огневого сжигания стимулировали поиск эффективных технологий обезвреживания токсических отходов.

Применение низкотемпературной плазмы – одно из перспективных направлений в области утилизации опасных отходов. Посредством плазмы достигается высокая степень обезвреживания отходов химической промышленности, в том числе галлоидосодержащих органических соединений, медицинских учреждений; ведется переработка твердых, пастообразных, жидких, газообразных; органических и неорганических; слаборадиоактивных; бытовых; канцерогенных веществ, на которые установлены жесткие нормы ПДК в воздухе, воде, почве и др.

Плазменный  метод может использоваться для обезвреживания отходов двумя путями [12]:

- Плазмохимическая  ликвидация особо опасных высокотоксичных  отходов;

- Плазмохимическая  переработка отходов с целью  получения товарной продукции.

Наиболее  эффективен плазменный метод при деструкции углеводородов с образованием CO, CO2, H2, CH4. Безрасходный плазменный нагрев твердых и жидких углеводородов приводит к образованию ценного газового полуфабриката в основном водорода и оксида углерода – синтез-газ – и расплавов смеси шлаков, не представляющих вреда окружающей среде при захоронении в землю, а синтез-газ можно использовать в качестве источника пара на ТЭС или производстве метанола, искусственного жидкого топлива. Кроме этого, путем пиролиза отходов возможно получение хлористого и фтористого водорода, хлористых и фтористых УВ, этанола, ацетилена [15]. Степень разложения в плазмотроне таких особо токсичных веществ как полихлорбифенилы, метилбромид, фенилртутьацетат, хлор- и фторсодержащие пестициды, полиароматические красители достигает 99.9998 % [12] с образованием CO2,

Информация о работе Утилизация, переработка бытовых и промышленных отходов