Состав атмосферы и его формирование в процессе эволюции биосферы

Автор работы: Пользователь скрыл имя, 28 Марта 2011 в 17:53, курсовая работа

Описание работы

Атмосфера это внешняя газовая оболочка Земли, которая начинается у ее поверхности и простирается в космическое пространство приблизительно на 3000 км. История возникновения и развития атмосферы довольно сложная и продолжительная, она насчитывает близко 3 млрд лет. За этот период состав и свойства атмосферы неоднократно изменялись, но на протяжении последних 50 млн лет, как считают ученые, они стабилизировались.

Файлы: 1 файл

курсач.docx

— 63.87 Кб (Скачать файл)

Новосибирский государственный аграрный университет

Агротехнологический факультет

Кафедра агроэкологии и микробиологии 
 
 
 

Курсовая  работа по сельскохозяйственной экологии на тему:

Состав  атмосферы и его  формирование в процессе эволюции биосферы. 
 

          Выполнила: Кириллова Ксения

         студентка 1404 группы

                                      Проверила: профессор, 

                                      к.б.н. Коробова Л. Н. 
         
         
         

                                          Новосибирск 2011  

Введение

    Атмосфера это внешняя газовая оболочка Земли, которая начинается у ее поверхности и простирается в космическое пространство приблизительно на 3000 км. История возникновения и развития атмосферы довольно сложная и продолжительная, она насчитывает близко 3 млрд лет. За этот период состав и свойства атмосферы неоднократно изменялись, но на протяжении последних 50 млн лет, как считают ученые, они стабилизировались.

    Масса современной атмосферы составляет приблизительно одну миллионную часть массы Земли. С высотой резко уменьшаются плотность и давление атмосферы, а температура изменяется неравномерно и сложно, в том числе из-за влияния на атмосферу солнечной активности и магнитных бурь. Изменение температуры в границах атмосферы на разных высотах поясняется неодинаковым поглощением солнечной энергии газами. Наиболее интенсивнее тепловые процессы происходят в тропосфере, причем атмосфера нагревается снизу, от поверхности океана и суши. Следует отметить, что атмосфера имеет очень большое экологическое значение. Она защищает все живые организмы Земли от губительного влияния космических излучений и ударов метеоритов, регулирует сезонные температурные колебания, уравновешивает и выравнивает суточные.      Если бы атмосферы не существовало, то колебание суточной температуры на Земле достигло бы ±200 °С. Атмосфера есть не только животворным «буфером» между космосом и поверхностью нашей планеты, носителем тепла и влаги, через нее происходят также фотосинтез и обмен энергии — главные процессы биосферы. Атмосфера влияет на характер и динамику всех экзогенных процессов, которые происходят в литосфере (физическое и химическое выветривания, деятельность ветра, природных вод, мерзлоты, ледников).

    Развитие гидросферы также в значительной мере зависел от атмосферы из-за того, что водный баланс и режим поверхностных и подземных бассейнов и акваторий формировались под влиянием режима осадков и испарений. Процессы гидросферы и атмосферы тесно связанные между собою.

    К сожалению, приходиться констатировать, что атмосфера с каждым годом промышленной деятельности человека становиться всё меньше и меньше пригодной для нормальной жизнедеятельности живых организмов.

    В своей работе я стремлюсь рассмотреть историю земной атмосферы, а именно её газового состава, начиная с момента образования и заканчивая нашим временем.

     Главная задача работы – рассмотреть все компоненты биосферы, главные и второстепенные, выявить их источники появления.

     Глобальная роль  атмосферы определяет особую ответственность всех государств за сохранение ее состава и предотвращения загрязнения воздушной среды, которое может отрицательно сказаться на развитии биосферы в целом. 
 
 
 
 
 

1.Появление  атмосферы и ее  первичный  состав

      Возраст атмосферы принято приравнивать к возрасту самой планеты Земля – примерно 5000 миллионов лет. На первоначальном этапе своего формирования Земля разогрелась до внушительных температур. «Если, как считает большинство ученых, только что образовавшаяся Земля была чрезвычайно горячей (имела температуру около 9000° C), то большинство газов, составляющих атмосферу, должны были бы покинуть её. По мере постепенного охлаждения и затвердевания Земли газы, растворенные в жидкой земной коре, выходили бы из неё». Из этих газов и сложилась первичная земная атмосфера, благодаря которой стало возможным зарождение жизни[2].

      Как только Земля остыла, вокруг неё, из выделенных газов, сформировалась атмосфера. Точное процентное соотношение элементов химического состава первичной атмосферы, к сожалению, определить не представляется возможным, но можно с точностью предположить, что газы, входящие в её состав, были подобны тем, которые теперь выбрасываются вулканами – углекислый газ, водяной пар и азот. «Вулканические газы в виде перегретых паров воды, углекислого газа, азота, водорода, аммиака, кислых дымов, благородных газов и кислорода формировали праатмосферу. В это время накопление кислорода в атмосфере не происходило, поскольку он расходовался на окисление кислых дымов (HCl, ,)[2].

      Существуют две теории происхождения самого важного для жизни химического элемента – кислорода. По мере охлаждения Земли температура упала примерно до 100° C, большая часть водяного пара сконденсировалась и выпала на земную поверхность первым дождем, вследствие, чего образовались реки, моря и океаны – гидросфера. «Водяная оболочка на Земле обеспечила возможность накопления эндогенного кислорода, став его аккумулятором и (при насыщении) поставщиком в атмосферу, к этому времени уже очищенную от воды, углекислоты, кислых дымов, и других газов в результате прошедших ливней»[4].

      Другая теория утверждает, что кислород образовался при фотосинтезе в результате жизнедеятельности примитивных клеточных организмов, когда растительные организмы расселились по всей Земле, количество кислорода в атмосфере стало быстро увеличиваться. Однако, многие учёные склонны рассматривать обе версии без взаимного исключения[4]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.Слои атмосферы

      Удерживаясь гравитационным полем Земли, атмосфера имеет зональное строение. Нижняя  прилегающая к  земной поверхности часть атмосферы до высоты 80 км  носит название гомосферы. Гомосфера,  в свою очередь, подразделяется на три оболочки, различающиеся по характеру температурного режима. Нижняя из них, называемая тропосферой, имеет основное значение для жизни на Земле. Её верхняя граница- тропопауза отделяет тропосферу от стратосферы. Тропопауза у полюсов располагается на высоте 8-10 км, а её высота увеличивается до 17 км. Выше стратосферы до высоты 80-90 км располагается верхний слой гомосферы – мезосфера, в пределах которого температура вновь уменьшается с высотой[2].

      Оболочка атмосферы, располагающаяся над гомосферой, получила название гетеросферы. Она состоит из четырех газовых слоев различного химического состава. На высотах 90-200 км расположен слой молекулярного азота. За ним до высоты порядка 1100 км следует слой атомарного кислорода, в составе которого преобладают атомы кислорода. Далее, между 1100 и 3500 км, прослеживается гелиевый слой. Выше этого уровня он сменяется водородным слоем, в котором преимущественную роль  играют атомы водорода. Условной границей водородного слоя считают высоту 10000 км, четкой верхней границы он не имеет.

В данной работе основное внимание будет уделено  наиболее важной для биосферы зоне атмосферы – гомосфере и особенно ее нижнему слою – тропосфере[2]. 

3. Современный состав атмосферы.

     Химический состав тропосферы  определяется присутствием четырех главных компонентов, составляющих более 99,99% её массы – азота, кислорода, аргона и углекислого газа. Кроме того, постоянными газовыми составляющими атмосферы является так же ряд микрокомпонентов, представленных главным образом редкими инертными газами и водородом. Кроме постоянных составных частей в атмосфере обычно присутствуют в переменных количествах ксенокомпоненты, являющиеся временными примесями, поступление которых обязано вулканической деятельности, жизнедеятельности биосферы, а так же производственной и бытовой деятельности человека. Большая часть ксенокомпонентов атмосферы в повышенных концентрациях оказывает отрицательное влияние на развитие растительности и живых организмов и, таким образом, должна рассматриваться как загрязнитель окружающей среды. К числу ксенокомпенентов атмосферы относятся также поступающие в нее в результате различных процессов пылевые частицы, которые часто мигрируют в воздушной среде на большие расстояние[2].

                                                                                                 Таблица 1.

                  Состав атмосферы Земли (без Н2О )

Элементы  и соединения Содержание  Общая масса, г
Об. % Вес. %
                                  Главные компоненты
 
 
 
78,084

20,946

75,51

23,15

3,865*

1,184*

                    Второстепенные компоненты 
Ar 
0,934

0,033

99,997

1,28

0,046

99,986

65,5* 

2,33*

                                      Микрокомпоненты
Ne

He

Kr

Xe

H2

182*

53*

12*

0,9*

5*

125*

7,2*

29*

3,6*

0,3*

63,6*

3,7*

14,6*

1,8*

0,2*

                              Ксенокомпоненты
 
 
 
Rn
15

5

4

4,5

9

7,6

6

6

4,3

4,0

3,1

2,32

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Главные компоненты атмосферы,  их происхождение и источники поступления

4.1 Азот

      Это главный химический элемент  тропосферы, имеющий огромное значение для развития жизни на нашей планете. Из 16* моль азота, присутствующих в земной коре, 2,7*  моль находится в виде в атмосфере, 0,014* моль растворено в океанических водах и 10,3* моль в той или иной форме заключены в горных породах литосферы[8].

       Азот постоянно поступает в атмосферу из глубин Земли с вулканическими эманациями, которые содержат от первых единиц до нескольких десятков процентов молекулярного азота (в газах лав гавайских вулканов, например, содержится 5,7 вес. % ).  Еще более высокое содержание азота отмечается в газах горячих источников, получивших в связи с этим наименование азотных терм.  Лишь около 0,0014* моль азота играют активную роль в круговороте этого элемента, однако роль эта весьма важна. В биосфере происходят широкая аккумуляция и фиксация азота из воздуха различными группами микроорганизмов, заключающаяся в превращении молекулярного азота в или . Процесс этот идет с поглощением энергии. Другие группы бактерий участвуют в окислении и до нитрит-иона (Nitrosomonas) и далее до нитрат-иона ( Nitrobacter ) по общей схеме: 

 Окисление  или + →+;

 Нитрификация  +→. 

Оба процесса идут с выделением энергии[2].

     Нитраты и нитриты, накапливающиеся таким образом в почве, в свою очередь, ассимилируются растениями. При этом вновь происходит восстановление их до , который затем используется при построении аминогрупп. Важнейшим азотсодержащими соединениями животных и растений являются белки, которые содержат до 18% азота. Таким образом, органическое соединение азота, входящие в состав живого вещества, могут рассматриваться как аккумуляторы энергии[2].

      Помимо процессов накопления и связывания азота воздуха растениями в природе, правда, в более ограниченных масштабах, развивается и обратный процесс – денитрификация, осуществляемая в анаэробных условиях некоторыми видами бактерий. При этом  процессе, также требующих затрат энергии, нитрат – или нитрит-ионы восстанавливаются до молекулярного азота или .  Подсчитано, что в результате денитрификации с 1 га почвы в атмосферу ежегодно поступает 50-60 кг азота.  Процесс этот идет с выделением энергии по следующей общей схеме:

Информация о работе Состав атмосферы и его формирование в процессе эволюции биосферы