Разрушениие озонового слоя

Автор работы: Пользователь скрыл имя, 11 Марта 2011 в 09:15, реферат

Описание работы

Проблема экологии для людей сейчас, несомненно, самая главная. На реальность экологической катастрофы указывает разрушение озонного слоя Земли. Озон - трехатомная форма кислорода, образуется в верхних слоях атмосферы под действием жесткого (коротковолнового) ультрафиолетового излучения Солнца.

Файлы: 1 файл

Разрушение озонового слоя.docx

— 269.88 Кб (Скачать файл)

     В последнее десятилетие ушедшего века измерения содержания озона  проводились с помощью российских стратосферных самолетов, ранее  используемых в военных целях. В  их числе М-17, созданный под руководством генерального конструктора В.М. Мясищева, и его модификация М-55, разработанная Экспериментальным машиностроительным заводом (ЭМЗ) им. В.М. Мясищева. Эти летательные аппараты представляют собой выдающиеся образцы мировой авиационной техники. Уже в 1990 г. самолетом М-17 «Экологический интернационал» проведены первые исследования состояния атмосферы с целью определения содержания в ней озона. Эта работа проводилась в рамках проекта «Глобальный резерв озона», организаторами которого были объединение «Ноосфера», ЭМЗ им. В.М. Мясищева и Московская патриархия. Самолет М-55 также получил новое назначение и название «Геофизика». В переоборудовании самолета принимали участие ученые Центральной аэрологической обсерватории Росгидромета и Института космических исследований Российской академии наук (РАН). В 1994 г. комиссия по научно-техническому сотрудничеству между Российской Федерацией и Итальянской Республикой одобрила международный проект создания на базе советского высотного самолета-разведчика М-55 летающей лаборатории для проведения всестороннего мониторинга атмосферы Земли, в частности стратосферного озона. В декабре 1996 г. — январе 1997 г. состоялась первая международная научная экспедиция по изучению озонового слоя в Арктике с помощью самолета-лаборатории М-55 «Геофизика». Создание подобной летающей лаборатории — это вклад России в выполнение ее обязательств по Венской конвенции и Монреальскому протоколу.

     Мониторинг  озона как в верхних слоях атмосферы, так и в приземном слое в нашей стране осуществляет Росгидромет и в первую очередь его ведущие институты — Центральная аэрологическая обсерватория (ЦАО), Главная геофизическая обсерватория и Институт прикладной геофизикии имени академика Е.К. Федорова.

     Проблемой озонового слоя занимаются также  многие научно-исследовательские институты  РАН, например Институт космических  исследований, Физический институт, Институт химической физики, Институт физики Земли.

     

     Рис. 3. Истощение озона над Антарктидой 

     Состояние озонового слоя в мире и над  Россией. Исследования, проведенные в Антарктике с помощью американских спутников «Нимбус-7» и российских «Метеор-3», показали уменьшение общего содержания озона в районе 60—90° ю.ш. за 20 лет (1979—1999). На рис. 3 приводится содержание озона О3 (в единицах Добсона, ДЕ), 1 ДЕ = 0,01 мм толщины слоя, который получается, если сжать весь озон, содержащийся в атмосфере, до давления 101,3 КПа (760 мм рт. ст.) при температуре 0 °С. Тогда образующийся слой озона в 3 мм (нормальное значение) будет соответствовать 300 ДЕ. Все данные получены за период с середины сентября по начало октября. Из данных следует, что минимальное количество озона, почти такое же, как в 1995 г., наблюдалось в 1999 г.

     Мониторинг  содержания озона, проводимый в нашей  стране, позволяет дать следующую  характеристику озонового слоя над  территорией России в последнее  десятилетие XX в.

     Если  в 1970—1980 гг. снижение общего содержания стратосферного озона (ОСО) над Россией  происходило эпизодически, то в 1990-х  гг. озоновые «дыры» над обширными  регионами России зимой стали  носить устойчивый характер.

     С декабря 1992 г. по апрель 1993 г. над территорией СНГ значения ОСО были ниже климатических норм на 5—20%. Наибольшие среднемесячные отклонения в декабре составляли 10—12% севернее 50° с. ш. Понижение ОСО достигало 20% над Восточной Сибирью в январе и над севером европейской части в феврале 1993 г. В марте—апреле этого же года наиболее низкие значения ОСО отмечены на северных широтах (от 60° и выше). В период с мая по сентябрь над территорией СНГ значения ОСО были ниже нормы на 5—15%. В октябре—ноябре ОСО было близко к норме. В декабре 1993 г. над всей территорией России ОСО было пониженным. Таким образом, в период с декабря 1992 г. по сентябрь 1993 г. для средних и высоких широт территории СНГ, как и для всего Северного полушария, были характерны пониженные значения ОСО.

     Зимой 1993—1994 гг. не было столь обширных и  сильных отрицательных отклонений ОСО, как зимой 1992—1993 гг., однако в  зимне-весенний сезон 1994—1995 гг. опять  отмечены значительные отрицательные  отклонения в содержании озона.

     До  середины 1990-х г. общее содержание озона над Скандинавией и северо-западом  России в январе было обычно ниже, чем  над северо-востоком Сибири и Камчаткой, на 20—25%. Однако в последние годы снижение ОСО стало наблюдаться  и над другими областями России. Так, в январе 1995 г. отмечено снижение ОСО над Западно-Сибирской равниной и Среднесибирским плоскогорьем на 15—20%, в то время как над северо-западом России ОСО было ниже нормы только на 10—15%.

     В 1996 г. (в период с января по апрель) над большей частью контролируемой территории России наблюдались пониженные среднемесячные значения ОСО. С мая по июль незначительные понижения отмечались только в отдельных районах. В августе значения ОСО приблизились к климатическим нормам, а в сентябре в отдельных регионах оказались несколько выше средних многолетних значений. К декабрю 1996 г. значения ОСО снова понизились. В целом за 1996 г. ОСО было несколько ниже нормы над европейской территорией России и Уралом, устойчиво ниже нормы — над Западной и Восточной Сибирью, а также над Дальним Востоком. Над Якутией озоновый слой был минимален, и жители республики подвергались сильному ультрафиолетовому облучению.

     Весной  1996 г. было зарегистрировано уменьшение озонового слоя до 30% над Республикой Коми, Архангельской и Кировской областями РФ, что, по мнению некоторых специалистов, связано с воздействием выбросов при запусках искусственных спутников Земли с космодрома Плесецк, находящегося в Архангельской области.

     С января по май 1997 г. значения ОСО были ниже нормы на 5—30% преимущественно над Сибирью и Дальним Востоком, в особенности над их северными районами. С июня по ноябрь среднемесячные значения ОСО над всей контролируемой территорией были близки к норме. В декабре значения ОСО также были близки к норме, исключая северо-западную часть европейской территории России (ЕТР) и Балтии, где дефицит озона превышал 20%.

     Следует отметить, что уже не первый год  выделяется весна с аномально  низкими значениями ОСО в марте  и апреле над Восточной Сибирью. Аномалия 1997 г. была самой значительной как по длительности, так и по размерам затрагиваемой территории и дефициту озона (—30%) за все время наблюдений. Эта аномалия над восточной территорией страны явилась отражением необычно низкого содержания озона в циркумполярном вихре весной 1997 г., когда в Арктике наблюдалось близкое подобие озоновой «дыры» в Антарктике. «Дыра» над Арктикой и значительной частью Восточной Сибири имела диаметр ~3 тыс. км. Таким образом, наиболее неблагоприятными с точки зрения повышения доз УФ-Б (биологически опасной) радиации в 1997 г. были Восточная Сибирь и северо-запад ЕТР.

     В 1998 г. в отличие от ряда предыдущих лет общее содержание озона над территорией Российской Федерации характеризовалось значениями, близкими к средним многолетним. Только в отдельные периоды наблюдался некоторый дефицит озона (5—25%), преимущественно над Якутском, Архангельском, Владивостоком, Сибирью, Дальним Востоком, Северным Уралом, ЕТР. В другие месяцы наблюдались повышенные значения ОСО над этими же районами. В ноябре ОСО практически над всей территорией России было выше средних многолетних. В целом за 1998 г. ОСО над Россией было близко к «нормам» 70-х гг. и даже несколько их превышало. Неблагоприятных по ОСО зон на территории нашей страны не было.

     Наблюдаемое поведение озона над территорией  России зимой — весной 1997—1998 гг. можно объяснить естественными  и антропогенными факторами. Среди  естественных причин можно назвать  влияние изменений солнечной  и вулканической активности, динамики атмосферы, флуктуации температуры. Долговременные изменения содержания озона связаны  с солнечной активностью, которая  имеет 11-летний цикл. Например, максимум солнечной активности отмечен в  1979 г. Кроме того, наблюдаются изменения содержания озона с более коротким периодом — 26 месяцев. К антропогенным факторам относятся выбросы парниковых газов и озоноразрушающих веществ, содержащих хлор. Это приводит к потеплению тропосферы и похолоданию стратосферы. Рост антропогенного хлора в стратосфере вызывает понижение уровня глобального ОСО. Другое антропогенное воздействие — повышение содержания парниковых газов — с одной стороны, должно приводить к некоторому уменьшению скорости разрушения озона при понижении температуры стратосферы; с другой стороны, при этом может увеличиться скорость разрушения озона в результате активации хлора в гетерогенных реакциях на сульфатном аэрозоле и полярных стратосферных облаках. Совокупность всех этих факторов в конечном итоге влияет на содержание озона.

     В 1999 г., как и в 1998 г., средние значения общего содержания озона над всей территорией России оказались близки к средним многолетним.

     В целом с 1979 г. наблюдается понижение глобального среднегодового ОСО со скоростью примерно 2,5% за десятилетие.

     Озоноразрушающие вещества. К числу основных озоноразрушающих веществ (ОРВ) относятся:

     • хлорфторуглероды (ХФУ, международное обозначение CFC — chlorofluorocarbon), такие как фтортрихлорметан CFC13(ХФУ-11, или CFC-11), дифтордихлорметан CF2C12 (ХФУ-12, илиСРС-12)идр.;

  • фторхлорбромуглероды, иначе называемые талонами, такие как дифторхлорбромметан CF2ClBr (галон-1211) и трифтор-бромметан CF3Br (галон-1301);
  • гидрохлорфторуглероды (ГХФУ, международное обозначение — HCFC), в них не все атомы водорода замещены галогенами (например, дифторхлорметан CHC1F2);
  • метилбромид СН3Вг, метилхлороформ СН3СС13 (МХФ) и четыреххлористый углерод СС14 (ЧХУ).

     Из  перечисленных веществ главными виновниками разрушения озона являются ХФУ и галопы.

     Хлорфторуг-лероды (ХФУ) имеют и другие названия: хлорфторметаны, хладоны, фреоны. Они относительно химически инертны (нереакционноспособны), негорючи, малотоксичны, просты в производстве и хранении, очень летучи, практически нерастворимы в воде и хорошо растворимы в органических растворителях. Более того, являясь газами при комнатной температуре, они сжижаются при небольшом давлении с выделением тепла, а испаряясь, вновь его поглощают и охлаждаются. Благодаря этим свойствам ХФУ широко используются в технике.

  • Первоначально ХФУ стали использовать как хладагенты в холодильниках и кондиционерах воздуха. Поскольку эти изделия ломаются и в конце срока эксплуатации выбрасываются, содержащиеся в них ХФУ попадают в атмосферу.
  • Другая область применения — ХФУ как пропелленты (распылители) в аэрозольных упаковках различного назначения.
  • Следующая важнейшая область их применения — производство пористых пластмасс (пенопластов). ХФУ растворяют в жидких пластмассах при повышенном давлении (они хорошо растворимы в органических веществах). Когда давление понижают, они вспенивают пластмассу, так как растворимость их уменьшается, и при этом улетучиваются в атмосферу.

     Талоны  уже в середине 1940-х гг. стали  применяться как эффективные  средства пожаротушения. Галон-1301 и  сейчас широко используется пожарными  службами многих стран.

     В России к концу XX столетия сложилась  следующая структура использования  озоноразрушающих веществ (ОРВ) по секторам потребления, связанным с промышленным производством: 1 — аэрозольные упаковки — 46%; 2— холодильная техника (бытового, торгового и промышленного назначения) и кондиционеры — 27%; 3— средства пожаротушения — 14%; 4 — пенопласта — 11%; 5— растворители — 2%.

     В свое время разработка ХФУ определяла новую ступень американской промышленности. Хлорфторуглеродные соединения открыл в 1928 г. химик корпорации «Дюпон» Томас Мидгли. Он знал, что компания «Дженерал-Моторс» работает над усовершенствованием холодильных агрегатов. В то время в качестве хладагентов использовали аммиак NH3 или сернистый газ SO2, которые имели серьезные недостатки: например, аммиак огнеопасен, а сернистый газ токсичен. Токсичным можно считать и хлористый метил СН3С1, использовавшийся до фреонов в качестве хладагента. Новый хладагент должен был быть нетоксичным, неогнеопасным и устойчивым. Томас Мидгли нашел такие соединения, он назвал их фторуглеродами, так как они содержали углерод и один или несколько атомов галогенов (фтор, хлор, бром, йод). Позднее их стали называть хлорфторуглеродами (ХФУ), поскольку в состав химикатов, используемых в аэрозольных упаковках, вошли главным образом хлор и фтор.

     Чтобы продемонстрировать неогнеопасность и нетоксичность этого нового класса химических соединений, Т. Мидгли даже вдыхал их и выдыхал на свечу. Только в 1970-х гг. было установлено, что вдыхание ХФУ дает наркотический эффект. Использование аэрозольных баллончиков с пропеллентами из ХФУ представляет опасность для здоровья людей. В больших концентрациях ХФУ могут вызывать остановку сердца, а в малых дозах — нарушение его ритма. Вдыхание содержимого аэрозольных баллончиков оказывает отрицательное воздействие на легкие. Хлорфторуглеродные соединения, предложенные Т. Мидгли, получили торговое название «фреоны» (от лат. frigor — холод), и оно стало торговой маркой корпорации «Дюпон».

     Во  время Второй мировой войны в  качестве пропеллента инсектицидов использовали оксид углерода(ГУ) СО2. Так называемые «противоклопиные бомбы» (банки) открыли практику использования химикатов в аэрозольных баллончиках. В 1947 г. на рынке аэрозолей главным товаром были инсектициды. Позднее аэрозольные баллончики стали использоваться и для других видов продукции.

     В 1950-х гг. в качестве пропеллентов стали широко применяться фреон-11 и фреон-12, которые, как потом выяснилось, оказались и наиболее опасными для озона. Эти фреоны позволяли производить тонкое распыление, они были устойчивы и не вступали в реакции с содержимым баллончика.

Информация о работе Разрушениие озонового слоя