Проект установки для очистки воздуха дробильного отделения от пыли

Автор работы: Пользователь скрыл имя, 11 Декабря 2010 в 15:13, курсовая работа

Описание работы

Важность проблемы охраны чистоты атмосферного воздуха и опасность усиливающегося его загрязнения достаточно хорошо оценены во всех странах мира. Уменьшение выбросов вредных веществ в атмосферу в результате совершенствования технологических процессов вплоть до создания безотходной технологии, создание эффективных средств пылеулавливания и очистки газов – вот пути предотвращения загрязнения атмосферного воздуха.

Файлы: 1 файл

техника.doc

— 1.23 Мб (Скачать файл)

Федеральное агентство по образованию РФ

ФГАОУ ВПО  «Уральский федеральный университет  имени первого Президента России Б.Н.Ельцина» 

Кафедра химической технологии топлива и промышленной экологии 
 
 
 
 
 
 
 
 
 

Курсовой  проект

по дисциплине «Техника защиты окружающей среды»

на тему: Проект установки для очистки  воздуха дробильного отделения  от пыли 
 
 
 
 
 
 
 
 
 
 
 
 
 

Екатеринбург 2010 
 
 
 
 
 
 

Содержание

 

ВВЕДЕНИЕ

 

     Стремительный прогресс науки и техники потребовал значительного увеличения производства и потребления черных и цветных металлов, пластмасс, строительных материалов и химических продуктов.

     Большинство технологических процессов сопровождается выделением в производственные помещения  и атмосферу газов и пыли. Интенсификация производства путем применения кислорода и природного газа обусловила резкое увеличение поступления в атмосферу технологических и вентиляционных газов, загрязненных пылью и вредными веществами. Пыль и вредные газы после выброса в атмосферу изменяют ее состав, уменьшая количество кислорода, необходимого для жизнедеятельности людей и животных. Загрязненный воздух приводит к ослаблению организма человека, сопротивляемости его к инфекционным заболеваниям и снижению работоспособности. Он также оказывает вредное воздействие на растительный мир, приводя к его гибели, снижению урожайности; наносит огромный материальный ущерб вследствие коррозии металлов, разрушения строительных материалов и конструкций.

     Пыль, содержащаяся в атмосфере, поглощает  световые лучи и задерживает ультрафиолетовую солнечную радиацию, необходимую для жизнедеятельности на Земле. Пыль и пары кислот, поступающие вместе  с дымовыми газами в атмосферу, поглощают из нее водяные пары, увеличивая число дней с туманами. В большинстве случаев технологические газы и вентиляционный воздух, выбрасываемые в атмосферу, содержат пыль черных и цветных металлов, ценные газообразные компоненты, которые безвозвратно теряются, поэтому выброс таких газов не только ухудшает санитарное состояние атмосферы, но и наносит большой материальный ущерб.

     Важность  проблемы охраны чистоты атмосферного воздуха и опасность усиливающегося его загрязнения достаточно хорошо оценены во всех странах мира. Уменьшение выбросов вредных веществ в атмосферу  в результате совершенствования  технологических процессов вплоть до создания безотходной технологии, создание эффективных средств пылеулавливания и очистки газов – вот пути предотвращения загрязнения атмосферного воздуха.

 

1.Принципиальная  технологическая  схема производства  цемента

    Шымкентский цементный завод АО «Шымкентцемент» основан в 1958 году. Шымкентским цементом построены Байконур, аэропорты Алматы и Ташкента, Каширская и Нурекская ГЭС, Каракумский канал и многие другие известные сооружения в Республике Казахстан и странах ближнего и дальнего зарубежья.

    Завод оснащен 6 высокотехнологичными линиями  по производству цемента с высокой  степенью автоматизации, что позволяет  довести годовой объем производства до 1,8 млн. тонн.

    Сегодня    Шымкентский    цементный    завод,    поддерживаемый    одним     из крупнейших   цементных   производителей   мирового   класса,   гарантирует   своим клиентам высокое качество продукции по приемлемым ценам. В настоящее время выпускается цемент:

     1. Портланд бездобавочный М 500; 2.ПортландМ400;

     3. Шлакопортланд М 400;

     4. Портланд с минеральными добавками М 400;

      5. Тампонажный М 400;

     6. Сульфатостойкий М 400.

    Основной  сырьевой базой АО «Шымкентцемент»  являются Казы-Куртское месторождение  известняков и Текесуйское месторождение  лёсса. Эксплуатируются с 1959 года.

    Производство цемента осуществляется по технологии “мокрого” приготовления сырьевой смеси с последующим обжигом её  во вращающихся печах Æ 4х150 м. В качестве топлива в технологии получения цемента могут использоваться различные виды топлива (природный газ, мазут, уголь).

    Известняк проходит две стадии измельчения  в щековых и молотковых дробилках, после чего поступает на помол  в шаровые мельницы, где размалывается  с водой и шламовыми насосами подается в корректировочные шламовые бассейны. Лёсс, предварительно смешанный с водой в специальных глиноболтушках, закачивается в вертикальные бассейны. Для сушки доменных шлаков, компонента сырьевой шихты для помола цемента в сушильном отделении шлака установлены 3 сушильных барабана 0 2 ,8 х 19,5 м производительностью 30,2 т/час каждый. Сухой шлак ленточным конвейером подается на клинкерный склад, затем в печной парк. Печной парк оснащен вращающимися печами производительностью 35 т/час (вращающаяся печь № 2) и 37 т/час (вращающиеся печи №1,3-6). Охлаждение клинкера производится в колосниковых холодильниках. Помол цемента осуществляется в трубных шаровых мельницах (8 шт.). Для хранения цемента на  заводе   имеется  два  блока  силосов.   Для  упаковки   цемента   имеется упаковочная машина.  

      

    Сырьевой  цех включает в себя дробильное отделение и отделение помола и приготовления сырья.

    В дробильном отделении имеются 2 технологические  линии по дроблению известняка: одна действующая, вторая резервная. Каждая из линий состоит из щековой дробилки 1800 х 1200 мм производительностью 260 т/час для первичного дробления и двух спаренных молотковых дробилок с диаметром ротора 1400 мм и производительностью 100 т/час каждая для вторичного дробления.

    Мельничное  отделение оснащено 7-ю сырьевыми  мельницами:№ 1-3 (2,6 х 13м) производительностью  45,0 т/час, № 4- 7 (3 х 14 м) производительностью 70,0 т/час. Тип – трехкамерный:

    1 камера – шары диаметром 80-100мм. (31тонна).

    2 камера – шары диаметром 50-70мм, (27тонн).

    3 камера – цильпебсы диаметром25мм  и L=40мм, (64тонны).

    Остаток на сите 002 = 7%. Коэффициент заполнения мелющими телами 1-0,334, 2-0,284, 3-0,292.

    Приготовленный  известняковый шлам центробежными  насосами транспортируется в вертикальные шлам бассейны. Количество -14 шт. Емкость - по 1000 м3. Горизонтальные бассейны. Количество - 3 шт. Емкостью – 2шт: 4000 м3 и 1шт: 5000 м3. транспортирование сырьевой смеси и подача ее на обжиг производится с помощью шламовых насосов Тип насосов - 6ФШ - 7А.

    Аспирационный воздух от щековой дробилки обеспыливается в циклоне-промывателе «СИОТ-6» , а от молотковых дробилок - в циклоне-промывателе «СИОТ-5». Очистка аспирационного воздуха от перегрузочного узла подачи сырья в бункера сырьевых мельниц осуществляется в циклонах-промывателях «СИОТ».

    Дробленый известняк по системе ленточных  транспортеров попадает в бункера сырьевых мельниц. Вдоль базисного склада на длину горизонтального транспортера устроена траншея куда сбрасывается дробленый известняк. Краном - перегружателем по траншеи известняк складируется в запас на базисном складе. По мере необходимости запаса, тем же краном известняк подается в приемный бункер, а затем ленточными транспортерами в бункера сырьевых мельниц. Дозировка известняка в мельницы производится тарельчатыми питателями. Приготовленный известняковый шлам центробежными насосами транспортируется в вертикальные бассейны № 1,2,3,5,7,8,9,10.

    Корректирующие  добавки из базисного склада по линии  дробленого известняка попадает в сырьевые мельницы, где размалывается с  незначительной добавкой известняка и перекачивается в вертикальный бассейн № 6.

     Откорректированный  шлам сливается в три горизонтальных бассейна.                  Сырьевой шлам центробежными насосами подается в шламонакопители, откуда через контрольные бачки по трубе во вращающиеся печи.

 

2. Сухие центробежные циклоны

     Циклоны получили широкое распространение в системах газоочистки и аспирационной вентиляции. В зависимости от требований, предъявляемых к очистке газа, и дисперсного состава пыли циклоны применяют самостоятельно или используют в качестве аппаратов для грубой очистки газа в сочетании с другими аппаратами, предназначенными для тонкой очистки его. В настоящее время эксплуатируются циклоны различных конструкций. Как показали сравнительные испытания сухих центробежных циклонов, проведенные НИИОгазом, ЛИОТ, НИИСТО, следует отдавать предпочтение циклонам конструкции НИИОгаза, которые более совершенны и способны с достаточной эффективностью улавливать частицы пыли размером более 10 мкм.

     Несмотря  на конструктивные особенности циклонов разных типов, все они имеют общий принцип действия (Рис.1).

     

     Рис.1. Циклон конструкции ЦН НИИОгаза и  схема пылеотделения в нем

     Запыленный  поток газа постуает в циклон через  входной патрубок 1, расположенный  в верхней части аппарата по касательной  к цилиндрической части корпуса 4 циклона. В результате такого расположения входного патрубка газовый поток при входе в циклон приобретает вращательное движение и движется сверху вниз в кольцевом пространстве между внешней поверхностью выхлопной трубы 3 и внутренней поверхностью цилиндрической части циклона. В циклоне конструкции ЦН НИИОгаза для усиления вращательного движения газа сразу же за входным патрубком устроена вонтообразная крышка 2. Вместе с газом вращательное движение приобретают и содержащиеся в нем частицы пыли. При вращении частиц на них действует центробежная сила, которая отбрасывает частицы к внутренней поверхности корпуса циклона. Газ вместе с пылью образует в циклоне нисходящий кольцевой вихрь (пунктирная линия).

     Для увеличения скорости пыли перед попаданием ее в бункер за цилиндрической частью бункера делают коническую часть 5. Это необходимо, для того, чтобы пыль обладала большой силой инерции, за счет которой она могла бы свободно отделяться от газа в бункере. Пройдя коническую часть 5, газ выходит через пылевыпускное отверстие 6 в бункер циклона 7 и выносит в нем пыль. В бункере поток газа теряет скорость, вследствие чего из него выпадают частицы пыли. Поток освобожденного от пыли газа разворачивается на  180º и ввиду разрежения, возникающего в центральной части корпуса циклона, всасывается через  пылевыпускное отверстие в выхлопную трубу 3, образуя внутренний вихрь (сплошная линия). По мере движения газа к выхлопной трубе  к нему присоединяется отделившаяся от нисходящего вихря часть газа, потерявшая скорость и освобожденная от пыли.

     Очищенный от пыли газ выводится из аппарата либо через улитку 8, преобразующую винтообразное движение потока в прямолинейное, либо непосредственно через патрубок 9, который располагают вертикально за выхлопной трубой 3. Внизу в бункере устанавливают пылевой затвор 10, через который пыль удаляется из аппарата. Ввиду того что бункер  участвует в аэродинамике процесса очистки газа, циклоны нельзя эксплуатировать без бункера.

     Несмотря  на длительное время эксплуатации циклонов для очистки газа, еще не создана  стройная теория циклонного процесса. Считают, что движение частиц пыли в рациальном направлении к стенкам циклона проходит при равновесии центробежной силы, отбрасывающей частицу из вращающегося газового потока, и силы сопротивления движению частицы со стороны газового потока. Центробежную силу, Н1 выражают формулой:

, где m – масса частицы, (Н·с2)/м; ν0 – скорость вращения газового потока в циклоне, м/с; R – расстояние от оси циклона до частицы, находящейся во вращающемся газовом потоке, м.

     Приравняв эти силы и выразив массу шарообразной частицы как произведение ее объема на плотность пыли m = πd3п , можно найти скорость движения частицы к стенкам циклона

     

     После входа в циклон частица пыли может  пройти путь от внешней поверхности  выхлопной трубы радиусом R1 до внутренней поверхности цилиндрической части корпуса циклона радиусом R2. Поэтому наибольший путь частицы в радиальном направлении составит R2 - R1. Время, которое требуется для прохода пути R2 - R1 в радиальном направлении, будет равно

     Средний радиус вращения частицы в циклоне

       

     получим

 

     Из  полученной формулы можно сделать  выводы:

  1. С повышением скорости газа ν0 улавливание пыли в циклоне будет улучшаться. Однако при скоростях газа выше оптимальных (20-25 м/с) завихренный газовый поток будет срывать успевшие осесть в циклоне частицы пыли и снова возвращать их в газовый поток. При таких  условиях степень очистки газа в циклоне уменьшится. Скорость входа газа в циклон должна быть тем больше, чем мельче частицы пыли, но не выше 25 м/с (вследствие возрастания гидравлического сопротивления) и не ниже 15 м/с.
  2. Чем крупнее частицы пыли  и больше их плотность, тем скорее и полнее они будут отделяться от газового потока и улавливаться в циклоне.
  3. Чем выше температура газа, тем больше его вязкость и хуже проходит процесс улавливания пыли в циклоне.
  4. Чем больше высота цилиндрической части циклона, тем выше эффективность его работы. Обычно эту высоту выбирают с учетом двух оборотов газа при движении его в направлении бункера. При этом следует учитывать, что эффект пылеотделения продолжается и в конусной части циклона.
  5. Чем больше диаметр цилиндрической части циклона, тем больший путь должна пройти частица в процессе выделения из газа, тем меньше будет центробежная сила, отбрасывающая частицу пыли к стенкам циклона, и, следовательно,  меньше будет степень очистки газа. Поэтому одиночные сухие центробежные циклоны не рекомендуют выполнять диаметром более 1000 мм.

Информация о работе Проект установки для очистки воздуха дробильного отделения от пыли