Озоновые дыры как глобальная экологическая проблема

Автор работы: Пользователь скрыл имя, 18 Декабря 2017 в 12:57, реферат

Описание работы

Современная кислородная атмосфера Земли – уникальное явление среди планет Солнечной системы, и эта её особенность связана с наличием на нашей планете жизни.
Земля, несомненно, — самая уникальная планета в нашей солнечной системе. Это единственная планета, приспособленная для жизни. Но мы не всегда ценим это и считаем, что мы не в силах изменить и нарушить то, что создавалось на протяжении миллиардов лет. За всю историю существования еще никогда наша планета не получала таких нагрузок которые дал ей человек.
На нашей планете есть озоновый слой, который так необходим для нашей жизни. Он защищает нас от воздействия ультрафиолетовых лучей исходящих от солнца. Не будь его, жизнь на этой планете была бы не возможной.

Содержание работы

ВВЕДЕНИЕ………………………………………………………………………3

РАЗДЕЛ 1. ОЗОНОВЫЕ ДЫРЫ И ПРИЧИНЫ ИХ ВОЗНИКНОВЕНИЯ…………………………………………………………….5
1.1. Причины возникновения озоновых дыр……………………….…………..5
1.2 Источники разрушения озонового слоя…………………………………....7
1.3 Озоновая дыра над Антарктикой………………………………..………….10

РАЗДЕЛ 2. ОСНОВНЫЕ МЕРОПРИЯТИЯ ПО ЗАЩИТЕ ОЗОНОВОГО СЛОЯ…………………………………………………………………..…..…….13

РАЗДЕЛ 3. ПРАВИЛО ОПТИМАЛЬНОЙ КОМПОНЕНТНОЙ ДОПОЛНИТЕЛЬНОСТИ………………………………………………..……15

РАЗДЕЛ 4. ЗАКОН Н.Ф. РЕЙМЕРСА О РАЗРУШЕНИИ ИЕРАРХИИ ЭКОСИСТЕМ…………………………………………………..………………16

ЗАКЛЮЧЕНИЕ……………………………..……………………………….…18

БИБЛИОГРАФИЧЕСКИЙ СПИСОК…………………………………..…..19

Файлы: 1 файл

Озоновые дыры.docx

— 116.13 Кб (Скачать файл)
N2 + O + M = N2 O + M,
2NH3 + 2O2 =N2 O = 3H2 .
Масштаб этого явления очень значителен. Таким путём в атмосфере ежегодно образуется примерно 3 млн т. закиси азота! Эта цифра говорит о том, что этот источник разрушения озона существенный.

 

1.3 Озоновая дыра над Антарктикой
В начале 70-х годов ученые начали замечать уменьшения озонового слоя. Причиной этому является попадание в верхние слои стратосферы озоноразрушающих веществ, использующихся в промышленности, запуск ракет, вырубка лесов и много других факторов. В основном это молекулы хлора и брома. Хлорфторуглероды и другие вещества, выпущенные человеком, достигают стратосферы, где под влиянием солнечных лучей распадаются на хлор и сжигают молекулы озона. Доказано что одна молекула хлора может сжечь 100000 молекул озона. А держится она в атмосфере от 75 до 111 лет!
В результате падения озона в атмосфере происходят озоновые дыры. Первая была обнаружена в начале 80-х в Арктике. Диаметр ее был не сильно велик, а падение озона составило на 9 процентов.
Озоновая дыра в Арктике

 

Озоновая дыра — это сильное падение процента озона в определенных местах атмосферы. Само слова «дыра» нам дает понять это без лишних объяснений.
О значительном уменьшении общего содержания озона над Антарктикой впервые было сообщено в 1985 г. Британской антарктической службой на основании анализа данных озонометрической станции Хэлли-Бей (76 гр. ю. ш.). Уменьшение озона наблюдалось этой службой и на Аргентинских островах (65 гр. ю. ш.).
С 28 августа по 29 сентября 1987 г. было выполнено 13 полётов самолёта-лаборатории над Антарктикой. Эксперимент позволил зарегистрировать зарождение озонной дыры. Были получены её размеры. Исследования показали, что наибольшее уменьшение количества озона имело место на высотах 14 — 19 км. Здесь же приборы зарегистрировали наибольшее количество аэрозолей (аэрозольные слои). Оказалось, что, чем больше имеется аэрозолей на данной высоте, тем меньше там озона. Самолёт — лаборатория зарегистрировал уменьшение озона, равное 50%. Ниже 14 км. изменений озона было несущественным.
Уже к началу октября 1985 г. озонная дыра (минимум количества озона) охватывает уровни с давлением от 100 до 25 гПа, а в декабре диапазон высот, на которых она наблюдается, расширяется.
Во многих экспериментах измерялось не только количество озона и других малых составляющих атмосферы, но и температуры. Была установлена самая тесная связь между количеством озона в стратосфере и температурой воздуха там же. Оказалось, что характер изменения количества озона тесно связан с тепловым режимом стратосферы над Антарктидой.
Образование и развитие озонной дыры в Антарктиде наблюдали английские учёные и в 1987 г. Весной общее содержание озона уменьшилось на 25%.
Американские исследователи проводили измерения в Антарктике зимой и ранней весной 1987 г. озона и других малых составляющих атмосферы (HCl, HF, NO, NO2, HNO3, ClONO2, N2 O, CH4 ) c помощью специального спектрометра. Данные этих измерений позволили очертить область вокруг Южного полюса, в которой количество озона уменьшено. Оказалось, что эта область совпадает практически в точности с крайним полярным стратосферным вихрем. При переходе через край вихря резко менялось количество не только озона, но и других малых составляющих, оказывающих влияние на разрушение озона. В пределах озонной дыры (или, другими словами, полярного стратосферного вихря) концентрация HCl, NO2 и азотной кислоты была значительно меньше, чем за пределами вихря. Это имеет место потому, что хлорины в продолжении холодной полярной ночи разрушают озон в соответствующих реакциях, выступая в них как катализаторы. Именно в каталитическом цикле с участием хлора происходит основное уменьшение концентрации озона (по крайней мере 80% этого уменьшения).
Эти реакции протекают на поверхности частиц, составляющих полярные стратосферные облака. Значит, чем больше площадь этой поверхности, т. е. чем больше частиц стратосферных облаков, а значит, и самих облаков, тем быстрее в конце концов распадается озон, а значит, тем эффективнее образуется озонная дыра.

 

РАЗДЕЛ 2. ОСНОВНЫЕ МЕРОПРИЯТИЯ ПО ЗАЩИТЕ ОЗОНОВОГО СЛОЯ
Поскольку наиболее активный разрушитель озонового щита Земли – хлор, основные меры, разрабатываемые для сдерживания истощения озона, сводятся к снижению выбросов в атмосферу хлора и хлорсодержащих соединений, прежде всего фреонов. Одна из главных технологических задач, решения которой ищут во всех промышленно развитых странах, — замена фреонов на другие хладагенты, не содержащие хлора и вместе с тем не уступающие фреонам по основным физическим свойствам и химической инертности.
Другая задача, уже практически решенная в ракетоносителе «Энергия», заключается в переводе ракетной техники и высотной реактивной авиации на экологически безопасные виды топлива и двигатели.
Снижение выбросов оксидов азота наземными промышленными, энергетическими и транспортными системами имеет значение не только для снижения кислотности осадков и решения проблемы «кислых дождей». Окислы азота не полностью вымываются осадками, часть их достигает высот, на которых существует озоновый слой, и вносит свою лепту в его истощение.
Хотя окислы азота, по сравнению с хлором, в 10 тысяч раз менее активны как разрушители озона, их выброс в атмосферу многократно превышает выброс хлора. Это повышает важность разработки двигателей, энергетических установок, котлов, новых видов топлива и способов его сжигания, которые сводили бы к минимуму образование и выброс в атмосферу окислов азота.
Первая международная конвенция по мерам предохранения озонового слоя была заключена в Вене в 1985 году. Через несколько месяцев после нее была обнаружена «озоновая дыра» в Южном полушарии. После этого в Монреале был подписан протокол, обязывающий страны-участницы избавляться от своих вредных фреонов. В 1990, 1992 и 1997 гг. список разрушительных веществ пополнялся. В случае его соблюдения всеми странами (а Китай, например, и Индия конвенцию не подписали, рассудив, что она им «не по карману») прогнозисты обещали восстановление озонового слоя к 2150 году. Главными производителями вредных для озона соединений (90% от общемирового объема) называются развивающиеся страны (которые, по сути, являются потребителями устаревшей продукции «цивилизованных» стран) и страны бывшего СССР.
В то же время заявлено, что выброс фреонов в атмосферу, в 1986 году, достигавший 1.1 миллиона тонн, к 1996 г. снизился до 160 тысяч тонн. Без Монреальской конвенции к 2010 году мы имели бы 8 миллионов тонн годовых выбросов.

 

РАЗДЕЛ 3. ПРАВИЛО ОПТИМАЛЬНОЙ КОМПОНЕНТНОЙ ДОПОЛНИТЕЛЬНОСТИ
Правило оптимальной компонентной дополнительности гласит, что никакая экосистема не может самостоятельно существовать при искусственно созданном избытке или недостатке одного из экологических компонентов.
«Нормой» экологического компонента следует считать ту, которая обеспечивает экологическое равновесие определенного типа, позволяющее функционировать именно той экосистеме, которая эволюционно сложилась и соответствует балансу в природной надсистеме и всей иерархии природных систем на данной единице пространства (в конкретном биотопе).
Данное правило предупреждает о том, что длительное искусственное изменение одного из экологических компонентов неминуемо приведет к замене существующей экосистемы другой, не всегда хозяйственно желательной. При этом полезные для человека ресурсы экосистемы относительно быстро иссякнут. Правило дает объяснение причин гибели многих цивилизаций прошлого (начиная с цивилизаций Месопотамии и Древнего Египта), строивших свое благополучие на предельном экологическом дисбалансе и, как следствие, вынужденных вкладывать все большее количество энергии для получения единицы продукции. Исчерпание энергетических возможностей приводило цивилизации к краху. 

 

РАЗДЕЛ 4. ЗАКОН Н.Ф. РЕЙМЕРСА О РАЗРУШЕНИИ ИЕРАРХИИ ЭКОСИСТЕМ
Закон Н.Ф. Реймерса о разрушении иерархии экосистем гласит, что разрушение более трех уровней в экосистемной иерархии абсолютно необратимо и катастрофично.
Иерархические уровни геохор (биохор) – это расположение в порядке от высшего к низшему. Различают пять основных уровней угеохор и биохор:
— гигахоры – главнейшие элементы биосферы и географической оболочки: океаны и материки, биоклиматические пояса и биогеографические царстваразмером более 106 км2 ;
— мегахоры – единицы природно-хозяйственного и биогеографического (фитогеографического) районирования размером 103 -105 км2 ;
— макрохоры – территория конкретных ландшафтов, размером 10-10-2 км2 ;
— микрохоры и мезохоры – морфологические единицы ландшафта, размером 10-1 -10-2 км2 и входящие в их состав биогеоценозы.
Каждая подсистема следует за своей системой, вернее, развитие надсистемы определяет многие ограничения в развитии входящих в нее подсистем. Такой процесс «подталкивания», направления развития характерен для всего системного мира, как в сверхдлинных отрезках эволюционного времени, так и в сравнительно коротких сроках индивидуального развития. Всюду есть взаимоотношения в иерархии систем — эволюция эволюций и развитие развитей. Если развитие относительно детерминировано воздействием иерархии надсистем, а отчасти и подсистем в прошлом (подсистемы, изменяясь, не могут не влиять на целое, пример тому мутации), то характер процессов не изменится и в будущем, во всяком случае ближайшем (в масштабе характерного времени систем). И хотя принцип «развитие есть движение движений во всей иерархии значимых систем» не позволяет создать одной безальтернативной модели, все же можно прогнозировать вероятный ход событий.
Н.Ф. Реймерс (1994) отмечает, что закон неравномерности развития систем, или закон разновременности развития (изменения) подсистем в больших системах может быть сформулирован в таком виде: системы одного уровня иерархии (как правило, подсистемы системы более высокого уровня организации) развиваются не строго синхронно — в то время, когда одни из них достигли более высокого уровня развития, другие ещё остаются в менее развитом состоянии.

 

ЗАКЛЮЧЕНИЕ
Все глобальные экологические проблемы взаимосвязаны, и ни одна из них не должна рассматриваться в изоляции от других.
Казалось бы, количество озона в атмосфере очень велико – около 3 миллиардов тонн. Это, однако, ничтожная доля от всей атмосферы. Если бы весь озон атмосферы находился в приземном слое воздуха, то при «нормальных условиях» (давления 1 атмосфера и температура 25 градусов Цельсия) толщина озонового экрана, защищающего Землю от жесткого УФ-излучения Солнца, составляла бы всего около 3мм. Вместе с тем эффективность озонового слоя очень велика. В частности, специалистами рассчитано, что снижение содержания озона на 1% ведет к такому повышению интенсивности УФ-облучения поверхности, в результате которого количество смертей от рака кожи возрастет на 6-7 тысяч человек в год.
Необходимо срочно принимать меры к охране озонового слоя: разрабатывать безвредные хладагенты, способные заменить фреоны в промышленности и быту, экологически безопасные двигатели самолетов и космических ракетных систем, разрабатывать технологии, уменьшающие выбросы окислов азота в промышленности и на транспорте. Существующие международные соглашения по озону, Венская международная конвенция по охране озонового слоя и Монреальский протокол, обязывающий подписавшие его государства вести работу в конкретных направлениях, пока недостаточно эффективны. Еще недостаточно осознана людьми опасность, еще мало талантливых исследователей и инженеров работают в этой области. А время не ждет.

 

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

 

  1. Акимова Т.А., Хаскин В.В. Экология. – М.: ЮНИТИ-ДАНА, 2001. – 343 с.
  2. Бродский А.К. Экология: Учеб. для бакалавров. – М.: Кнорус, 2012. 272 с.
  3. Дедю И.И. Экологический энциклопедический словарь. – Кишинев: Мир, 1990. – 568 с.
  4. Князева Е.Н., Курдюмов С.П. Законы эволюции и самоорганизации сложных систем. – М.: Наука, 1994. – 250 с.
  5. Кормилицын В.И. Основы экологии. – М.: «Интерстиль», 1997. – 364 с.
  6. Коробкин В.И., Передельский Л.В. Экология: Учеб. для вузов. – М.: Феникс, 2012. 608 с.
  7. Общая экология: взаимодействие общества и природы. – СПб.: Химия, 1997.- 352 с.
  8. Розанов С.И. Общая экология. – СПб.: Издательство «Лань», 2001. – 288 с.
  9. Сверлова Л.И., Воронина Н.В. Загрязнение природной среды и экологическая патология человека. – Хабаровск.: ХГАЭП, 1995. – 106-108 с.
  10. «Способы восстановления озонового слоя». Журнал «Экология и жизнь» №4 - №1, 1997 - 1998.

Информация о работе Озоновые дыры как глобальная экологическая проблема