Общие закономерности их действие на живые организмы

Автор работы: Пользователь скрыл имя, 27 Марта 2011 в 16:22, реферат

Описание работы

Экология как наука сформировалась лишь в середине прошлого столетия, после того, как были накоплены сведения о многообразии живых организмов на Земле, об особенностях их образа жизни. Возникло понимание, что не только строение и развитие организмов, но и взаимоотношения их со средой обитания подчинены определенным закономерностям, которые заслуживают специального и тщательного изучения.

Содержание работы

1.Краткая история и предмет экология

2Общие закономерности их действие на живые организмы

2.1Принципы лимитирующих факторов. Закон толерантности

3.Биотическая структура и основные компоненты экосистемы

4.Пищевые цепи, пищевые сети и трофические уровни, энергия в экологических системах

5.Эволюция биосферы земли

6.Количественное изучение биохимических процессов

7. Кислотные дожди

8.Концепция взаимодействия общества и природы.

9.Экологические фонды

10. Список использованной литературы

Файлы: 1 файл

Естествознание.docx

— 50.59 Кб (Скачать файл)

При каждом объединении  подмножеств в новое множество  возникает по меньшей мере одно новое свойство; предлагается различать эмерджентные свойства, определение которых дано выше, и совокупные свойства, представляющие собой сумму свойств компонентов. И те и другие - свойства целого, но совокупные свойства не включают новых или уникальных особенностей, возникающих при функционировании системы как целого. Рождаемость - пример совокупного свойства, поскольку она представляет собой лишь сумму индивидуальных рождений за определенный период, выраженную в виде доли или процента общего числа особей в популяции. Эмерджентные свойства возникают в результате взаимодействия компонентов, а не в результате изменения природы этих компонентов. Части не «сплавляются», а интегрируются, обусловливая появление уникальных но-вых свойств.

Некоторые признаки, естественно, становятся более сложными и изменчивыми, когда по иерархии уровней организации (рис. 1.) продвигаешься  слева направо, другие же, напротив, часто становятся менее сложными и менее изменчивыми. Поскольку на всех уровнях функционируют гомеостатические механизмы, а именно корректирующие и уравновешивающие процессы, действующие и противодействующие силы, амплитуда колебаний имеет тенденцию уменьшаться, когда мы переходим к рассмотрению более мелких единиц, функционирующих внутри крупных. Статистически разброс значений целого меньше суммы разброса частей. Например, интенсивность фотосинтеза лесного сообщества менее изменчива, чем интенсивность фотосинтеза у отдельных листьев или деревьев внутри сообщества; объясняется это тем, что если в одной части интенсивность фотосинтеза снижается, то в другой возможно его компенсаторное усиление. Если учесть эмерджентные свойства и усиление гомеостаза на каждом уровне, то станет ясно, что для изучения целого не обязательно знать все его компоненты. Это важный момент, поскольку не-которые исследователи считают, что не имеет смысла пытаться изучать сложные популя-ции и сообщества, не изучив досконально составляющие его более мелкие единицы. На-против, изучение можно начать с любой точки спектра при условии, что учитывается не только изучаемый, но и соседние уровни, поскольку, как уже было сказано, некоторые свойства целого можно предсказать, исходя из свойств его частей (совокупные свойства), другие же нельзя (эмерджентные свойства). Идеальное изучение какого-либо уровня системы включает изучение трехчленной иерархии: системы, подсистемы (соседний низший уровень) и над системы (следующий верхний уровень).

В соответствии со сказанным мы будем обсуждать  принципы экологии на уровне экосистемы, уделяя достаточно внимания таким под  системам , как популяция и сообщество, и такой над системе, как биосфера. 
 

 

3 Биотическая структура и основные компоненты экосистемы. 
 

Распространение и  численность организмов каждого  вида ограничиваются не только условиями  внешней неживой среды, но и их отношениями с организмами других видов. Непосредственное живое окружение  организма составляет его биотическую  среду, а факторы этой среды называются биотическими. Представители каждого  вида способны существовать в таком  окружении, где связи с другими  организмами обеспечивают им нормальные условия жизни.

Выделяют различные  формы биотических отношений. Если обозначить положительные результаты отношений для организма знаком “+”, отрицательные результаты знаком “-”, а отсутствие результатов через “0”, то встречающиеся в природе типы взаимоотношений между живыми организмами можно представить в виде таблицы 7. 
 

Эта схематичная  классификация дает общее представление  о разнообразии биотических отношений. Рассмотрим характерные особенности  отношений различных типов.

Конкуренция является в природе наиболее всеохватывающим  типом отношений, при ко-тором две популяции или две особи в борьбе за необходимые для жизни условия воздействуют друг на друга отрицательно.

Хищничество и паразитизм. Поскольку в структуре экосистемы преобладают пищевые взаимодействия, наиболее характерной формой взаимодействия видов в трофических цепях  является хищничество, при котором  особь одного вида, называемая хищником, питается организмами (или частями  организмов) другого вида, называемого  жертвой, при-чем хищник живет отдельно от жертвы. В таких случаях говорят, что два вида вовлечены в отношения "хищник - жертва".

Еще один тип взаимодействия видов - паразитизм. Паразиты питаются за счет другого организма, называемого  хозяином, однако в отличие от хищников они живут на хозяине или внутри его организма на протяжении значительной части их жизненного цикла. Паразит  использует для своей жизнедеятельности  питательные вещества хозяина, тем  самым постоянно ослабляя, а нередко  убивая его.

От паразитизма  отличается аменсализм, при котором один вид причиняет вред другому, не извлекая при этом для себя никакой пользы. Чаще всего это те случаи, когда причиняемый вред заключается в изменении среды. Так поступает человек, разрушая и загрязняя окружающую среду.

Симбиоз - это длительное, неразделимое и взаимовыгодное отношение  двух или более видов организмов. Например, жвачные животные ( коровы, олени) переваривают клетчатку с помощью бактерий. Стоит только удалить этих симбионтов, и животные погибнут от голода.

Другим вариантом  положительных отношений между  двумя видами является комменсализм. Извлекая из хозяина значительную пользу (пища, убежище), виды - комменсалы не приносят ему никакой выгоды или заметного  вреда. Например, многочисленные виды насекомых встречаются исключительно  в муравейниках, норах грызунов, гнездах птиц, используя их как  местообитание с более благоприятным  микроклиматом.

Нейтрализм - это  такой тип отношений. при котором ни одна из популяций не ока-зывает на другую никакого влияния: никак не сказывается на росте его популяций, находящихся в равновесии, и на их плотности. В действительности бывает, однако, довольно трудно при помощи наблюдений и экспериментов в природных условиях убедиться, что два вида абсолютно независимы один от другого.

Обобщая рассмотрение форм биотических отношений, можно  сделать следующие выводы:

- отношения между живыми организмами являются одним из основных регуляторов численности и пространственного распределения организмов в природе;

- негативные взаимодействия между организмами проявляются на начальных стадиях развития сообщества или в нарушенных природных условиях; в недавно сформировавшихся или новых ассоциациях вероятность возникновения сильных отрицательных взаимодействий больше, чем в старых ассоциациях;

- в процессе эволюции и развития экосистем обнаруживается тенденция к уменьшению роли отрицательных взаимодействий за счет положительных, повышающих выживание взаимодействующих видов.

Иногда животных, например, многих насекомых, поедающих  растения, а также паразитов, хищников рассматривают в качестве естественных врагов тех организмов, за счет которых  они существуют. Такой подход в  принципе неверен. Паразиты и хищники, зоофаги и фитофаги являются факторами  среды по отношению к своим  хозяевам, жертвам и т.п. Следовательно, с обще экологических позиций  все они необходимы друг другу. В  естественных условиях ни один вид  не стремится и не может привести к уничтожению другого. Более  того, исчезновение какого-либо естественного  “врага” из экологической системы  может привести к вымиранию того вида, на котором развивается этот “враг”.

Все эти обстоятельства человек должен учитывать при  проведении мероприятий по управлению экологическими системами и отдельными популяциями с целью использования  их в своих интересах, а также  учитывать косвенные последствия, которые могут при этом иметь  место.  

 

4 Пищевые цепи, пищевые сети и трофические уровни, энергия в экологических системах. 

Рассматривая общий  поток энергии, характеризующий  среду экосистемы, выделим часть  которая, проходит через живые компоненты экосистемы.

Перенос энергии  пищи от ее источника - автотрофов (растений) через ряд организмов, происходящий путем поедания одних организмов другими, называется пищевой цепью. Пищевые цепи можно разделить на два типа: пастбищная цепь, которая начинается с зеленого растения и идет далее к пасущимся растительноядным животным (т.е. к организмам, поедающим живые растительные клетки или ткани) и к хищникам (организмам, поедающим животных); и детритная цепь, которая от мертвого органического вещества идет к микроорганизмам, а затем к детритофагам и к их хищникам. Пищевые цепи не изолированы одна от другой, а тесно переплетаются друг с другом, образуя, так называемые, пищевые сети.

В сложных природных  сообществах организмы, получающие свою энергию от Солнца через одинаковое число ступеней, считаются принадлежащими к одному трофическому уровню. Первый трофический уровень представлен  первичными продуцентами или автотрофами; к ним относятся зеленые растения, которые способны использовать солнечный  свет для образования химических соединений, богатых энергией. Второй трофический уровень образуют растительноядные животные, называемые первичными консументами. Плотоядных, которые питаются растительно - травоядными называют вторичными консументами или первичными хищниками; они занимают третий трофический уровень. Хищники, питающиеся первичными хищниками, в свою очередь, образуют четвертый трофический уровень и называются третичными консументами или вторичными хищниками. Точно также животные, потребляющие вторичных хищников называются четвертичными консументами или третичными хищниками, они находятся на пятом трофическом уровне и т.д.

Эта трофическая  классификация относится к функциям, а не к видам как таковым. Поскольку  многие животные всеядны и питаются как растениями, так и животными, т.е. одновременно получают энергию  с нескольких разных трофических  уровней, их невозможно отнести к  определенному уровню. Принято считать, что такие организмы представляют сразу несколько трофических  уровней, а их участие в каждом уровне пропорционально составу  их диеты.

В исследованиях  структуры сообществ понятие  трофического уровня оказалось чрезвычайно  полезной абстракцией. Оно облегчает  изучение потока вещества и энергии  через сообщество и подчеркивает различия между взаимодействиями, которые протекают внутри трофических уровней и между ними.

Принцип организации  пищевых цепей и действия двух законов термодинамики можно  уяснить, рассмотрев схему переноса энергии на рис. 3. На этой схеме четырех-угольники изображают трофические уровни, "трубы" - потоки энергии от каждого уровня или к нему. Как требует первый закон термодинамики, приток энергии уравновешивается ее оттоком, и каждый перенос энергии сопровождается ее рассеянием в форме недоступной для использования тепловой энергии (при дыхании), как того требует второй закон.  
 

Рис.3. Упрощенная схема  потока энергии, показывающая три трофических  уровня (I, II и III ) в линейной пищевой цепи ( E.Odum, 1963.)

I - общее поступление энергии; LA - свет, поглощаемый растительным покровом; PG - валовая первичная продуктивность ; А - общая ассимиляция; PN - чистая первичная продукция; P2-3 - вторичная продукция (консументов); NU- неиспользуемая (накапливаемая или экспортируемая энергия); NA- не ассимилированная консументами (выделенная с экскрементами) энергия; R - дыхание.

Представленная  схема потоков энергии на трех трофических уровнях сильно упрощена. Но она позволяет ввести принятые в литературе обозначения разных потоков и ясно показывает, что  на каждом последующем уровне поток  энергии сильно уменьшается независимо от того, рассматривается ли общий  поток (I - общий поток энергии  и А - общая ассимиляция) или компоненты Р (продуктивность биомассы)и Р (дыхание). Показано, что на первом трофическом уровне поглощается около 50 % падающего света, а превращается в энергию пищи всего 1 % поглощенной энергии, а также "двойной метаболизм" продуцентов (т.е. валовая и чистая продукция). Вторичная продуктивность ( Р ) на каждом после-дующем трофическом уровне консументов составляет около 10 % предыдущей , хотя на уровне хищников эффективность может быть выше, скажем 20 %. Если питательная ценность источника энергии велика (например, продукт фотосинтеза, извлекаемый или выделяемой прямо из растительных тканей), то эффективность переноса энергии может быть гораздо выше. Но поскольку и растения, и животные производят, много трудно перевариваемого вещества (целлюлоза, лигнин, хитин), а также химические ингибиторы, препятствующие поеданию различными консументами, средняя эффективность переноса энергии между трофическими уровнями в целом составляет 20 % и менее.  

Информация о работе Общие закономерности их действие на живые организмы