Круговорот воды

Автор работы: Пользователь скрыл имя, 28 Сентября 2011 в 23:34, реферат

Описание работы

Значение круговорота воды велико, так как он не только объединяет части гидросферы, но и связывает между собой все оболочки Земли: атмосферу, гидросферу, литосферу и биосферу. Вода во время круговорота может быть в трех состояниях: жидком, твердом, газообразном. Она переносит огромное количество веществ, необходимых для жизни на Земле.

Содержание работы

Введение…………………………………………………………...….. 3
Круговорот воды:
вода в атмосфере……………………………………………………… 4
испарение……………………………………………………………….4
конденсация…………………………………………………………….5
образование облаков…………………………………………………...8
типы облаков……………………………………………….…………..9
образование осадков…………………………………………………..10
Схема круговорота воды природе………………………………...12
Вывод………………………………………………………………….13
Литература…………………………………………………………...14

Файлы: 1 файл

РЕФЕРАТ.doc

— 96.50 Кб (Скачать файл)
 

Оглавление 

Введение…………………………………………………………...….. 3

Круговорот  воды:

вода в атмосфере……………………………………………………… 4

испарение……………………………………………………………….4

конденсация…………………………………………………………….5

образование облаков…………………………………………………...8

типы облаков……………………………………………….…………..9

образование осадков…………………………………………………..10

Схема круговорота воды  природе………………………………...12

Вывод………………………………………………………………….13

Литература…………………………………………………………...14 
 
 
 
 
 
 
 
 
 
 
 
 
 

Введение

      Ученые  подсчитали, что 97.5% всех запасов воды на планете Земля приходится на соленые воды морей и океанов. Иными словами, пресная вода составляет только 2.5% мировых запасов. Если учесть, что 75% пресной воды "заморожено" в горных ледниках и полярных шапках, еще 24% находится под землей в виде грунтовых вод, а 0.5% "рассредоточено" в почве в виде влаги, то получается, что на наиболее доступные и дешевые источники воды — реки, озера и прочие наземные водоемы, приходится чуть больше 0.01% мировых запасов воды. Принимая во внимание то значение, которое вода имеет для жизнедеятельности человека и всего живого на Земле, приведенные цифры наглядно подтверждают сакраментальный тезис о том, что вода

— одно из самых драгоценных сокровищ нашей  планеты.

        Значение круговорота воды велико, так как он не только объединяет части гидросферы, но и связывает между собой все оболочки Земли: атмосферу, гидросферу, литосферу и биосферу. Вода во время круговорота может быть в трех состояниях: жидком, твердом, газообразном. Она переносит огромное количество веществ, необходимых для жизни на Земле. 
 
 
 
 

Круговорот воды:

вода  в атмосфере

     В настоящее время процесс под  названием "круговорот воды" хорошо изучен. Другое название этого явления  гидрологический цикл. Основная суть этого цикла состоит в том, что вода переходит из одного состояния  в другое, при этом меняя не только состояние, но и часть окружающей нас среды. Поскольку круговорот воды - процесс установившийся, то количество воды, вышедшее из какого-нибудь процесса должно равняться количеству, пришедшему в следующий процесс.

испарение

     Испарение - это процесс, в результате которого вода из океана или с поверхности Земли поступает в атмосферу. Тот же процесс, при котором испарение происходит с поверхности зеленых растений, называется транспирацией, а если молекулы воды переходят в газообразное состояние непосредственно с поверхности льда, то такой процесс называется возгонкой (сублимацией). Пары воды, которые в результате этих процессов пополняют количество газов, находящихся в атмосфере, увеличивают атмосферное давление.

     Молекулы  водяного пара могут быстро двигаться в воздухе над поверхностью жидкости, при этом часть из них будет ударяться о жидкость и захватываться ею, переходя в жидкое состояние. Этот процесс называется конденсацией. Если систему оставить в таком состоянии на довольно длительное время, в ней установится равновесие, при котором процессы конденсации и испарения уравновесят друг друга; при этом количество водяного пара в воздухе будет оставаться постоянным. В таких случаях говорят, что воздух насыщен водяным паром; давление, которое при этом оказывают пары воды, называют упругостью насыщенного пара по отношению к водной поверхности.

     Ниже 0°С упругость насыщенного пара меньше над поверхностью льда, чем над  поверхностью переохлажденной воды. (Воду можно охладить ниже 0°С, и при  этом она не начнет замерзать, если в ней нет частиц, которые будут служить ядрами кристаллизации) В том случае, если не существует поверхности, на которой может происходить конденсация водяного пара, воздух станет перенасыщенным, но все же сохранит содержащееся в нем количество водяного пара.

конденсация

     В атмосфере над поверхностью воды или льда присутствует множество  загрязняющих ее частиц, таких, как  кристаллы соли, образовавшиеся при  испарении брызг воды, пыль, занесенная из пустынь или образовавшаяся в  результате вулканических извержений, а также частички от дыма пожаров. Эти частицы, на которых происходит конденсация, называются ядрами конденсации. Они различаются по своей способности вызывать конденсацию, но обычно в атмосфере бывает все же достаточное количество частиц, чтобы началась конденсация, как только влажность воздуха превысит 100%. Конденсация также может происходить на поверхности земли в виде росы или, если температура опускается ниже 0°С и происходит сублимация, в виде инея.

     Насыщение воздуха водяным паром, приводящее к конденсации, обычно происходит при его охлаждении. Чаще насыщение воздуха водяным паром происходит при охлаждении, которое может произойти на контакте с холодной поверхностью или же при подъеме воздуха вверх. В том случае, если воздух соприкасается с поверхностью, температура которой ниже его точки росы, и находится почти без движения, будет образовываться роса или иней. Но если поднимется слабый ветер, охлажденный воздух будет перемешиваться в тонком поверхностном слое. При достаточном охлаждении весь этот слой насыщается водяным паром, в результате чего образуется туман.

     Более сильный ветер будет перемешивать более мощный слой воздуха, и поэтому  едва ли можно предположить, что  вся его масса охладится до точки росы. Следовательно, сильный  ветер препятствует образованию тумана. Частицы дыма и твердые частицы пыли, выбрасываемые промышленными предприятиями, уменьшают видимость как непосредственно, так и косвенно в связи с тем, что они представляют собой гигроскопические ядра, способствующие конденсации. Этот густой смешанный туман называется смогом.

     В соответствии с причиной, по которой  нижележащая поверхность оказалась  холоднее соприкасающегося с ней  воздуха, различают два основных типа туманов.

     1. Радиационный туман образуется  над земной поверхностью в результате охлаждения ее длинноволновым излучением тепла в пространство в ночное время. Ночное охлаждение поверхности моря по сравнению с охлаждением поверхности суши очень незначительно. Благоприятными условиями для появления радиационного тумана является отсутствие облачного покрова и небольшая скорость ветра. Таким образом, такой туман образуется над земной поверхностью при небольшой скорости ветра во время ясных ночей и чаще всего когда приземные слои воздуха имеют высокую относительную влажность, а поверхность суши - холодная и влажная, как, например, болотистая местность в зимнее время. Обычно ранним утром солнечные лучи проникают через такой радиационный туман и, нагревая, рассеивают его. Но в том случае, если мощный слой такого тумана образовался над холодной поверхностью моря в зимнее время, когда поступление солнечного тепла весьма невелико, радиационный туман может продержаться весь день.

     2. Адвективный туман образуется  в результате горизонтального  перемещения относительно теплой  воздушной массы над более холодной поверхностью суши или моря. Такой туман наиболее устойчив над морем, поверхность которого труднее нагревается слоем воздуха или солнечным теплом. Большинство морских туманов - адвективные. При сильном ветре и значительной разности между температурой воздуха и температурой нижележащей водной поверхности этот туман очень устойчив и простирается на высоту порядка 200 м над уровнем моря. Можно предположить, что такие туманы могут образоваться над любой холодной поверхностью моря, если существует поверхностное течение, чаще всего весной или летом, когда температура воздуха наиболее высока и он насыщен водяным паром. Над сушей адвективные туманы чаще всего бывают зимой, при поступлении влажного морского воздуха на охлажденную поверхность. Но поскольку поверхность земли может нагреваться достаточно быстро, адвективный туман скоро рассеивается, если этому только не препятствуют процессы, способствующие образованию радиационного тумана.

     Кроме этих двух основных типов существует несколько менее распространенных разновидностей туманов. Паровой туман, или "курение моря", возникает, когда масса холодного воздуха перемещается над морем и происходит постоянное быстрое испарение водяных паров. Воздух, соприкасающийся с поверхностью моря, получает тепло и одновременно насыщается водяными парами по отношению к температуре поверхностных вод. Затем он поднимается и смешивается с более холодными слоями, которые в очень незначительной степени могут насыщаться водяным паром, так что образуется перенасыщенная смесь и начинается конденсация. Такие туманы обычно стелются очень низко.

     Фронтальный туман, или туман смешения, образуется на границе между двумя воздушными массами с различными температурой и влажностью, каждая из которых  близка к насыщению.

     Туман склонов (восхождения) образуется вдоль склонов холмов или гор. В действительности это низкие облака, поэтому такой тип туманов лучше рассматривать в главе, посвященной облакам.

образование облаков

     Облака  возникают в результате конденсации  водяного пара в свободной атмосфере. Помимо рассмотренных выше процессов перемешивания, приводящих к насыщению, конденсация водяного пара в атмосфере происходит из воздуха, который в результате охладился до точки росы. Подъем же воздуха в атмосфере определяется тремя основными причинами. Когда движущийся в горизонтальном направлении воздух встретит на своем пути барьер в виде холмов или горных хребтов, он должен обойти его сверху или сбоку, если только он не накапливается позади этого барьера. Если барьер имеет не слишком малое горизонтальное простирание, воздух сначала начнет опускаться и скапливаться позади него, однако следующая воздушная масса будет вынуждена подниматься выше барьера, чтобы преодолеть его. Если воздушная масса поднялась над таким орографическим барьером на 500 м, и если при этом не произошло насыщения, ее температура понизится на 5°С. Возможно, на некоторых уровнях воздушная масса достигнет точки росы и при этой степени охлаждения, что приведет к формированию облаков. На других же уровнях точка росы не будет достигнута.

     Второй  из причин подъема воздуха является горизонтальная конвергенция воздушных масс. Если это происходит в достаточно крупном масштабе, то на этот процесс влияет вращение Земли, что приводит к образованию циклонов. Часто в средних и высоких широтах в результате этого в соприкосновение вступают две различные воздушные массы. При этом одна из них, обладающая меньшей плотностью, поднимается вверх. Такой подъем воздуха вдоль границы, или фронта, который разделяет различные воздушные массы, обычно называется фронтальным подъемом.

     Третьей причиной является нагревание воздуха  вблизи поверхности Земли, в результате чего он становится менее плотным  и поднимается вверх. Этот процесс  называется конвекцией. В жаркий солнечный  день воздух в горах может прогреться в достаточной мере и вызвать конвекцию, но этот процесс может начаться и под воздействием другой причины-наличия воздушной массы, которая поднялась над орографическим барьером. В данном случае имеется уже не одна, а две причины, приводящие к подъему воздуха.

типы облаков

     Облака обычно классифицируют по форме, по тому, содержат ли они капли воды или кристаллы льда, по высоте расположения основания и степени вертикального развития. Перистые облака преимущественно состоят из ледяных кристаллов (так называемые ледяные облака). Перистые облака, с характерными резко загнутыми краями, указывают на очень сильные вертикальные сдвиги в воздухе. Перисто-слоистые облака отличаются от высококучевых облаков смешанного строения волнистым краем, а также появлением гало вокруг Солнца или Луны, которое можно увидеть сквозь тонкий слой перисто-слоистых облаков в результате рефракции света на кристаллах льда. Водяные облака обладают, напротив, резко очерченными краями. Слоистые облака образуются на сравнительно небольшой высоте; обычно их основание находится ниже двух километров. Если слоистые облака образуют мощный слой и из них непрерывно идет дождь, их называют слоисто-дождевыми. Слоисто-кучевые и высококучевые облака отличаются главным образом по высоте, на которой находятся их основания; слоисто-кучевые облака обычно более мощные, и между отдельными облаками, как правило, остается меньше чистого пространства, чем у высококучевых.

     Кучево-дождевые облака характеризуются большой  вертикальной мощностью. Заметной мощности могут иногда достигать и кучевые облака. Оба эти рода облаков относятся к водяным облакам нижнего яруса, но верхняя часть кучево-дождевого облака, из которого выпадают сильные дожди, состоит из ледяных кристаллов.

образование осадков

     Типичные  водяные облака состоят из мельчайших водяных капель со средним радиусом около 10 мк. В спокойной атмосфере такие капли имеют скорость падения около 0,01 м/сек, поэтому, если воздушная масса медленно поднимается приблизительно с такой же скоростью, капли остаются взвешенными в воздухе примерно на одной и той же высоте. Если воздушная масса "перестанет подниматься, то капли воды, радиус которых примерно вдвое больше среднего радиуса, могут достичь поверхности Земли приблизительно за полчаса, если облако расположено на высоте 100 м. Этого времени более чем достаточно для того, чтобы все капли испарились, прежде чем они достигнут Земли.

Информация о работе Круговорот воды