Автор работы: Пользователь скрыл имя, 05 Марта 2010 в 15:29, Не определен
I. Основы экологизации экономики и ее экологическая обусловленность
1. Экологическая обусловленность экономики
2.Основные составляющие экологизации экономики
3.Экологические факторы в категориях экономики.
Производственные сточные воды разделяют или объединяют в потоки по преобладающим загрязнителям с учетом мест образования и количества сто-' ков. При отсутствии резко выраженных видов загрязнений все производственные сточные воды объединяют в один поток, устанавливая на входе очистных сооружений специальные емкости - коллекторные усреднители.
Перспективным
направлением водообеспечения и защиты
водных объектов от загрязнения является
создание межотраслевых
водохозяйственных
систем, учитывающих взаимосвязанное
развитие технологий производства, водопользования,
обработки и утилизации отводимых вод
(Кухарь и др., 1989). В представленной на
рис. 10 схеме предусматриваются оборотное
и повторное использование вод, локальная
и общая очистка стоков на предприятиях
промышленности и энергетики. Часть промышленных
сточных вод, прошедших локальную очистку,
и стоки коммунального хозяйства обрабатываются
совместно на централизованных (региональных,
городских) очистных сооружениях. Межотраслевые
водохозяйственные системы позволяют
использовать очищенные бытовые и промышленные
сточные воды для орошаемого земледелия,
а тепло сбросных вод электроэнергетики
- для интенсификации сельскохозяйственного
производства (например, обогрева теплиц)
и рыбного хозяйства. При этом одновременно
решаются и природоохранные проблемы,
так как экономятся водные ресурсы, уменьшается
сброс сточных вод в водоемы.
Рис. 10. Общая схема обработки, утилизации и сброса отводимых вод для основных отраслей хозяйства:
ВО
- водный объект; КХ -
коммунальное хозяйство;
ПП - промышленное производство;
ЭЭ - электроэнергетика;
ОРЗ - орошаемое земледелие;
СОП - система оборотного
и повторного использования
вод; ЛОС - локальные
очистные сооружения;
ЦОС - централизованные
очистные сооружения;
ОСП - очистные сооружения
предприятий; ОДПС -
система обработки дренажного
и поверхностного стока
Средства защиты от вредных физических воздействия. Техногенное химическое, радиационное и тепловое загрязнение среды оказывает влияние на все элементы биосферы, имеет глобальный масштаб и несомненное общеэкодогическое значение. Техногенное волновое загрязнение имеет более локальный характер и в наибольшей мере относится к экологии или даже скорее к гигиене человека. Особую остроту оно приобретает в крупных промышленных городах, где сосредоточены мощные источники электромагнитного и акустического загрязнения.
Защита от шума. В соответствии с действующими гигиеническими нормативами уровни звукового давления постоянного шума и эквивалентные уровни непостоянного шума в жилых помещениях не должны превышать 30 дБА ночью и 40 дБА в дневное время, на территории жилой застройки - соответственно 45 дБА и 55 дБА. Возможность выполнения этих нормативов в значительной мере зависит от шумовых характеристик различных источников.
Для
проектируемых объектов выбор средств
защиты от шума производится на основании
акустического расчета, включающего
выявление расчетных точек
L
= Lp + 10lgF + 10lgW + 20lgr - DLp
(8)
где L2 - уровень звуковой мощности источника излучения;
F - фактор направленности излучения шума;
W - пространственный угол излучения;
г - расстояние от источника шума;
DLp - потери уровня звуковой мощности на пути распространения шума. При отсутствии препятствий на пути распространения и небольших (до 50 м) расстояниях DLp » 0.
Из выражения (10.8) следует, что для снижения шума нужно:
а) уменьшить уровень звуковой мощности источника шума;
б) уменьшить направленность излучения шума;
в) увеличить угол излучения и расстояние от источника;
г) ослабить шум на пути его распространения к расчетной точке.
Первое достигается заменой источников на акустически менее мощные; следующие требования (б, в) - правильным планировочным расположением объектов шумового воздействия по отношению к источникам; последнее (г) - различными средствами звукоизоляции и виброизоляции, применением звукопоглощающих материалов и конструкций, установкой глушителей шума.
К
средствам звукоизоляции
Защита от инфразвуковых колебаний должна быть перенесена главным образом на их источники. К основным мерам относятся: уменьшение уровня колебаний в источнике; поглощение звуковой энергии при помощи глушителей; использование механических преобразователей частоты. Снижение интенсивности инфразвука может быть достигнуто за счет изменения режима работы технологического оборудования (например, увеличения числа рабочих циклов, что обеспечивает перевод частоты силовых импульсов за пределы инфразвукового диапазона), повышения жесткости крупногабаритных конструкций, устранения низкочастотных вибраций. Для уменьшения уровня инфразвуковых составляющих шума всасывания и выхлопа дизельных и компрессорных установок, турбин, ДВС целесообразно использование глушителей шума и специальных глушителей инфразвука камерного или резонансного типа. Механические преобразователи частоты, установленные в закрытых каналах на пути распространения инфразвука (например, в выхлопных трубах ДВС), позволяют преобразовывать инфразвуковые колебания в менее опасные ультразвуковые.
Защита от вредного воздействия вибраций осуществляется как воздействием на источник возбуждения вибрации, так и на пути ее распространения. Основными методами борьбы с вибрациями являются: снижение вибраций в источнике их возникновения, виброгашение, виброизоляция, вибродемпфирование. При создании нового оборудования и технологических процессов необходимо стремиться к исключению механизмов, кинематических и технологических схем, вызывающих ударную нагрузку, резкие ускорения и другие динамические процессы (устранение дисбаланса вращающихся частей; применение вместо кривошипных механизмов равномерно вращающихся; замена ковки и штамповки прессованием, пневматической клепки - сваркой и т.п.). Для снижения уровня производственных вибраций важно также предотвратить резонансные режимы работы оборудования, что обеспечивает изменение частот собственных и вынужденных колебаний машин и механизмов. Виброгашение обычно достигается путем установки тяжелых агрегатов (молотов, прессов) на массивные бетонные фундаменты, а более мелкого инженерного оборудования зданий - вентиляторов, насосов - на виброгасящие плиты и основания. Для уменьшения вибраций, создаваемых рельсовым транспортом, рельсы крепят на массивные железобетонные шпалы, погруженные в слой балласта.
Виброизоляция осуществляется путем введения в колебательную систему дополнительной упругой связи, уменьшающей передачу вибрации от источника колебаний к основанию или смежным элементам конструкций. Для этого применяют резиновые или пластмассовые прокладки, цилиндрические пружины и рессоры, воздушные подушки, гибкие вставки и их сочетания. А для уменьшения распространения вибрации от фундаментов машин по периметру фундаментов создают акустические щели или швы с засыпкой из рыхлого материала. В основе вибродемпфирования лежит увеличение активных потерь энергии путем превращения энергии механических колебаний в теплоту. Широкие возможности для защиты от вибраций имеет нанесение на вибрирующие поверхности деталей машин и инженерных коммуникаций упруговязких материалов и листовых вибродемпфирующих покрытий.
Защита от электромагнитных колебаний во многом зависит от их частотных характеристик и напряженности электромагнитных полей (ЭМП). Как уже отмечалось, основными источниками ЭМП промышленной частоты являются воздушные ЛЭП, а ЭМП радиочастотного диапазона - радиотехнические объекты (РТО). Санитарные нормы и правила защиты населения от воздействия электрического поля, создаваемого ЛЭП, устанавливают следующие ПДУ его напряженности (кВ/м): внутри жилых зданий - 0,5; на территории жилой застройки - 1; в населенной местности, вне зоны жилой застройки - 10; в ненаселенной местности, посещаемой людьми, - 15. Для ЭМП радиочастот в диапазоне 0,03-300 МГц нормируются электрическая (В/м) и магнитная (А/м) составляющие поля. В диапазоне частот 0,3-300 ГГц, где формируется единое ЭМП, устанавливается допустимая величина поверхностной плотности потока энергии (Вт/м2) и создаваемой им энергетической нагрузки (Втч/м2). В случае превышения предельно допустимого уровня напряженности и плотности потока энергии необходимо применять следующие способы и средства защиты:
При
экранировании заземленные
Таблица 1
Границы санитарно-защитных зон вдоль трассы ЛЭП на населенной местности
Напряжение ЛЭП. кВ | Расстояние от проекции на землю крайних фаз проводов, м |
1150 | 300 (55*) |
750 | 250 (40) |
500 | 150 (30) |
330 | 75 (20) |
220 | 25 |
110 | 20 |
35 | 15 |
До 20 | 10 |
Выше уже рассмотрены основные этапы техногенеза и важнейших технологических достижений человечества. Современный этап прогресса знаменуется переходом к постиндустриальной цивилизации, многие черты которой формируются под влиянием экологического императива. Индустриальный мир, построенный за счет разрушения природы планеты, достиг своей вершины и находится в состоянии климакса.
Постиндустриальный
тип технологического облика цивилизации
зародился и быстро развивается
в передовых индустриальных странах,
преодолевая инерцию и традиции
социально-экономической
Для наступающей постиндустриальной эпохи характерно не только повсеместное использование достижений науки и техники во всех областях человеческой деятельности, но и целенаправленное усовершенствование самой техники. На наших глазах заканчивается эра господства механической обработки материалов. Сегодня для этого используется огромный арсенал физических, химических и биохимических процессов, в которых воздействие на преобразуемый предмет осуществляется с помощью электромагнитных полей, лазерного излучения, плазмы, отдельных молекул, элементарных частиц, живых организмов. В распоряжении человечества появился целый ряд новых технологий, связанных с микроэлектроникой и информатикой (робототехника, гибкое автоматизированное производство); создано большое число новых синтетических материалов с заранее заданными свойствами (керамики, высокопрочные пластмассы, сверхтвердые композиционные материалы, стекловолокно, биоматериалы и др.); расширяется применение лазеров в разных технологических процессах; разработаны новые методы получения силиконовых слоев и техника нанесения их на кристаллы полупроводников при сверхвысоком вакууме; развиваются новые биотехнологии.