Экология как наука. Задачи экологии

Автор работы: Пользователь скрыл имя, 15 Февраля 2013 в 21:05, контрольная работа

Описание работы

“ Экология - это биологическая наука, изучающая формирование, структуру и функционирование биологических систем всех уровней от организма до биосферы и их взаимодействие с окружающей средой.
Экология как наука должна решать следующие задачи:
1.Изучать законы и закономерности взаимодействия организмов со средой их обитания.
2.Изучать формирование, структуру и функционирование надорганизменных биологических систем (популяция, биоценоз (сообщество), биогеоценоз (экосистема), биом, биосфера).
3.Изучать законы и закономерности взаимодействия надорганизменных биологических систем с окружающей средой.

Файлы: 1 файл

к.р по экологии 2012.doc

— 485.50 Кб (Скачать файл)

Луг - в широком смысле - тип зональной и интразональной растительности, характеризующийся господством многолетних травянистых растений, главным образом злаков и осоковых, в условиях достаточного или избыточного увлажнения. Общее для всех лугов свойство состоит в наличии травостоя и дернины. Различают материковые, пойменные и горные луга.

Болото -  особый тип наземных экосистем, для которого характерны избыточное увлажнение, наличие влаголюбивой растительности и процесс формирования торфа ( не менее 30 см ). Они в зависимости от способа питания и характера растительности подразделяются на низинные ( эвтрофные ), верховые ( олиготрофные ) и переходные ( мезотрофные ). Заболоченные участки и болота бывают низинные (имеют, как правило, питание подземными водами) и верховые (питаются атмосферными осадками). Верховые могут встречаться в любом понижении или даже на склонах гор, низинные возникают вследствие зарастания озер и речных стариц. Здесь распространены болотные растения. Болотные почвы и торфяники содержат много углерода. Их сельскохозяйственная отработка приводит к выделению в атмосферу большого количества углекислого газа.

Низинные болота питаются грунтовыми или речными водами, сравнительно богаты питательными веществами ; разнообразен их растительный покров, представленный мхами, болотным разнотравьем ( осоки, камыш, рогоз, тростник ) и древесными породами ( черная ольха, береза, ивы и др. ). Основная масса этих болот встречается в относительно засушливых областях, главным образом по долинам и в дельтах крупных рек. Верховые болота питаются в основном атмосферными осадками, поэтому бедны минеральными веществами и их растительность представлена сфагновыми мхами. Этот тип болот приурочен преимущественно к ландшафтам тундровой и таежной зон Евразии.

 

Распределение жизни в биосфере. Границы биосферы.

Биосфе́ра (от др.-греч. βιος — жизнь и σφαῖρα — сфера, шар) — оболочка Земли, заселённая живыми организмами, находящаяся под их воздействием и занятая продуктами их жизнедеятельности; «пленка жизни»; глобальная экосистема Земли.

Биосфера — оболочка Земли, заселённая живыми организмами и преобразованная ими. Биосфера начала формироваться не позднее, чем 3,8 млрд. лет назад, когда на нашей планете стали зарождаться первые организмы. Она проникает во всю гидросферу, верхнюю часть литосферы и нижнюю часть атмосферы, то есть населяет экосферу. Биосфера представляет собой совокупность всех живых организмов. В ней обитает более 3 000 000 видов растений, животных, грибов и бактерий. Человек тоже является частью биосферы, его деятельность превосходит многие природные процессы и, как сказал В. И. Вернадский: «Человек становится могучей геологической силой».

Биосфера - область распространения жизни на космическом теле. При том,  что существование жизни на других космических объектах, помимо Земли пока неизвестно, считается, что биосфера может распространяться на них в более скрытых областях, например, в литосферных полостях или в подлёдных океанах.

Распределение жизни в биосфере.

На поверхности Земли в настоящее  время полностью лишены живых  существ лишь области обширных оледенений и кратеры действующих вулканов. В. И. Вернадский указывал на «всюдность» жизни в биосфере. Об этом свидетельствует история нашей планеты. Жизнь появилась локально в водоемах и затем распространялась все шире и шире, заняв все материки. Постепенно она захватила всю биосферу, и захват этот, по мнению В. И. Вернадского, еще не закончился. Об этих потенциальных возможностях свидетельствуют масштабы приспособляемости живых организмов.

 Крайние пределы температур, которые выносят некоторые формы  жизни (в латентном состоянии), – от практически абсолютного нуля до +180 °C. Давление, при котором существует жизнь, – от долей атмосферы на большой высоте до тысячи и более атмосфер на больших глубинах. Для ряда бактерий верхние критические точки давления лежат в области 12 · 108 Па (12 тыс. атм). С другой стороны, семена и споры растений, мелкие животные в анабиозе сохраняют жизнеспособность в полном вакууме.

Живые организмы могут существовать в широком диапазоне химических условий среды. Первые живые существа Земли жили в бескислородной атмосфере. Анаэробный обмен свойствен и многим современным организмам, в том числе многоклеточным.

Уксусные угрицы (нематоды) обитают  в чанах с бродящим уксусом. Ряд  микроорганизмов живет в концентрированных  растворах солей, в том числе  медного купороса, фторида натрия, в насыщенном растворе поваренной соли. Серные бактерии выдерживают децимолярные растворы серной кислоты.

Некоторые особо устойчивые формы  могут существовать даже при действии ионизирующей радиации. Например, ряд  инфузорий выдерживает излучение, по дозе в 3 млн раз превышающее естественный радиоактивный фон на поверхности Земли, а некоторые бактерии обнаружены даже в котлах ядерных реакторов.

Выносливость жизни в целом  к отдельным факторам среды шире диапазонов тех условий, которые  существуют в современной биосфере. Жизнь, таким образом, обладает значительным «запасом прочности», устойчивости к воздействию среды и потенциальной способностью к еще большему распространению.

 Наряду с этим распределение  жизни в биосфере отличается  крайней неравномерностью. Она слабо развита в пустынях, тундрах, глубинах океана, высоко в горах, тогда как в других участках биосферы чрезвычайно обильна и разнообразна. Наиболее высока концентрация живого вещества на границах раздела основных сред – в почве, т. е. пограничном слое между литосферой и атмосферой, в поверхностных слоях океана, на дне водоемов и особенно на литорали, в лиманах и эстуариях рек, где все три среды – почва, вода и воздух – близко соседствуют друг с другом. Места наибольшей концентрации организмов в биосфере В. И. Вернадский назвал «пленками жизни».

Границы биосферы.

Верхняя граница в атмосфере: 15—20 км. Она определяется озоновым слоем, задерживающим коротковолновое  ультрафиолетовое излучение, губительное  для живых организмов.

Нижняя граница в литосфере: 3,5—7,5 км. Она определяется температурой перехода воды в пар и температурой денатурации белков, однако в основном распространение живых организмов ограничивается вглубь несколькими метрами.

Граница между атмосферой и литосферой в гидросфере: 10—11 км. Определяется дном Мирового Океана, включая донные отложения.

 

 

 

Функции живого вещества в биосфере.

Живое вещество — вся совокупность тел живых организмов в биосфере, вне зависимости от их систематической  принадлежности.

Живое вещество развивается там, где может существовать жизнь, то есть на пересечении атмосферы, литосферы и гидросферы.

Выделяют пять основных функций живого вещества:

Энергетическая. Заключается в поглощении солнечной энергии при фотосинтезе, а химической энергии – путем разложения энергонасыщенных веществ и передаче энергии по пищевой цепи разнородного живого вещества.

Концентрационная. Избирательное накопление в ходе жизнедеятельности определенных видов вещества. Выделяют два типа концентраций химических элементов живым веществом: а) массовое повышение концентраций элементов в среде, насыщенной этими элементами, например, серы и железа много в живом веществе в районах вулканизма; б) специфическую концентрацию того или иного элемента вне зависимости от среды.

Деструктивная. Заключается в минерализации необиогенного органического вещества, разложении неживого неорганического вещества, вовлечении образовавшихся веществ в биологический круговорот.

Средообразующая. Преобразование физико-химических параметров среды (главным образом за счет необиогенного вещества).

Транспортная. Пищевые взаимодействия живого вещества приводят к перемещению огромных масс химических элементов и веществ против сил тяжести и в горизонтальном направлении.

 

Эволюция биосферы, ее этапы и результат.

Биосфера — не только сфера распространения жизни, но и результат ее деятельности. Начиная с момента зарождения, жизнь постоянно развивается и усложняется, оказывая воздействие на окружающую среду, изменяя ее. Таким образом, эволюция биосферы протекает параллельно с историческим развитием органической жизни.

Выдающийся русский ученый В. И. Вернадский, один из создателей современного учения о биосфере, определил ее как наружную оболочку Земли, населенную живыми организмами. Биосфера включает в себя:

— живое вещество, т. е. совокупность всех живых организмов (растения, животные, грибы, микроорганизмы);

— биогенное вещество — органоминеральные  или органические продукты, созданные  живым веществом (торф, каменный уголь, нефть); — биокосное вещество, созданное  живыми организмами вместе с неживой (косной) природой (водой, атмосферой, горными породами), — почвенный покров;

— косное (мертвое) вещество, образованное процессами, в которых живые организмы  не участвуют (изверженные горные породы, космическая пыль и т. п.).

Биосфера находится в постоянном динамическом равновесии и развитии.

На начальном этапе  развития биосферы живые организмы использовали органические соединения первичного океана. Углекислый газ, как побочный продукт обмена веществ, выделялся в атмосферу.

Живые организмы довольно быстро использовали запасы органических веществ первичного океана. Преимущества получили и широко размножились микроорганизмы, например метановые бактерии, способные синтезировать органические соединения из углекислого газа и присутствующего в атмосфере водорода. В результате образовывался метан и высвобождалась энергия, использовавшаяся для процессов жизнедеятельности микроорганизмов. Метан поступал в атмосферу и под действием ультрафиолетового излучения превращался в водорастворимые органические соединения, которые вновь возвращались в воду.

В то время, по мнению ученых, в составе  атмосферы концентрация метана, определявшаяся жизнедеятельностью организмов, оставалась примерно на одном уровне.

Такое состояние могло сохраняться  до тех пор, пока в земной атмосфере было значительное количество водорода. Когда же запасы газообразного водорода истощились, метановые бактерии уже не могли перерабатывать углекислый газ в метан и таким образом лишились источника энергии для синтеза собственных питательных веществ.

Необходимо было найти источник получения энергии. Им стал фотосинтез. У первых фотосинтезирующих микроорганизмов, как и у современных цианобактерий, фотосинтез протекал без выделения  кислорода.

На следующем этапе  эволюции появились организмы с более совершенным механизмом фотосинтеза, в результате которого в качестве побочного продукта в атмосферу стал выделяться кислород. Это вело к изменению состава атмосферы Земли. Теперь в ней становилось все больше кислорода.

Кислород — сильный окислитель и губителен для анаэробных (живущих в бескислородной среде) организмов. Поэтому для живых организмов того времени он был сильным ядом. Практически кислород стал загрязнителем атмосферы, что привело к экологическому кризису. Живые организмы должны были погибнуть или приспособиться к новым условиям среды. У них стали появляться различные механизмы обезвреживания ядов. Некоторые из них выполняют у современных живых организмов совершенно иные функции. Например, ученые считают, что биохимический механизм, при помощи которого светлячок вырабатывает световую энергию, появился у древних организмов как средство обезвреживания губительного воздействия кислорода. В конечном итоге природн ни пит наиболее рациональный путь решения э,той проблемы. Живые организмы уже не боролись против кислорода, а использовали его для получения энергии. Появился процесс дыхания.

Фотосинтез сыграл огромную роль в  развитии органического мира и эволюции биосферы.

Первые живые организмы развивались  в воде, которая защищала их от губительного воздействия ультрафиолетовых лучей. Кислород, выделявшийся в процессе фотосинтеза, в верхних слоях атмосферы под действием ультрафиолетовых лучей превращался в озон (его молекула содержит три атома кислорода — 03). По мере накопления озона произошло образование озонового слоя, который, как экран, надежно защитил поверхность Земли от губительной для живых организмов ультрафиолетовой солнечной радиации. Это позволило живым организмам выйти на сушу и заселить ее.

Для поддержания жизнедеятельности  одной клетке требуется сравнительно мало энергии. Но чем сложнее организм, тем больше энергии ему необходимо. С появлением дыхания эта проблема была решена. Процесс дыхания обеспечил организмы энергией, что дало толчок к возникновению многоклеточных организмов, их дальнейшему развитию и усложнению.

В процессе дыхания организмы потребляли кислород и выделяли соответствующее  количество углекислого газа, который  использовался для синтеза органических веществ в процессе фотосинтеза. Постепенно между фотосинтези-рующими  организмами и гетеротрофами установилось равновесие, которое привело к стабилизации нового состава атмосферы. Сформировались современные круговороты углерода и кислорода.

Таким образом, благодаря жизнедеятельности организмов в биосфере непрерывно протекают процессы синтеза и распада органических веществ и происходят круговороты веществ, обеспечивающие стабильность функционирования биосферы. На разных этапах развития биосферы соотношение процессов синтеза и распада менялось. В начальный период развития биосферы процессы синтеза преобладали над разрушением. Это привело к тому, что из первичной атмосферы в большом количестве были изъяты метан, сероводород, углекислый газ, а концентрация свободного кислорода, отсутствовавшего в ней прежде, достигла современного уровня — 21%.

В конце мезозоя — начале кайнозоя между этими процессами в биосфере установилось относительное равновесие.

Около 2,5 млн лет назад появились  первые люди — далекие предки современного человека. Вначале люди были охотниками и собирателями. Однако в связи с усовершенствованием орудий охоты человечество весьма быстро, вероятно, всего за два-три тысячелетия, истребило крупных копытных, пещерных медведей и мамонтов — основу своего пищевого рациона того времени. Охота не могла уже обеспечить пропитание людей. Человек оказался на грани голодной смерти и был обречен на вымирание. Он мог бы и совсем исчезнуть с лица планеты, как исчезли многие биологические виды, например саблезубые тигры.

Информация о работе Экология как наука. Задачи экологии