Автор работы: Пользователь скрыл имя, 17 Апреля 2013 в 17:35, курсовая работа
Изучение экологии и современных экологических проблем основано на целостном рассмотрении чрезвычайно сложных систем. В биосфере каждое событие - это одновременно и причина возникновения других событий. Вся живая природа представляет собой единую сеть вещественных, энергетических и информационных взаимодействий, организованных в виде замкнутых авторегуляторных циклов. В недрах этой системы сравнительно недавно возникла и стремительно разрослась техносфера - порождение человеческой цивилизации. Техносфера нарушила замкнутость природных круговоротов.
Существует два основных класса редуцентов:
1. Детритофаги – напряму
2. Деструкторы – разлагают мертвую органическую материю на простые неорганические соединения (процесс гниения и разложения). Примером могут служить грибы и микроскопические одноклеточные бактерии [7].
Различают видовую, пространств
Видовая структура экосистемы - это разнообразие видов, взаимосвязь и соотношение их численности. Различные сообщества, входящие в состав экосистемы, состоят из разного числа видов - видового разнообразия. В таежном лесу, например, на площади в 100 м2 , как правило, произрастают растения около 30 различных видов, а на лугу вдоль реки - в два раза больше. Видовое разнообразие степей еще шире: на той же площади произрастают сотни растений.
Видовое разнообразие зависит от соотношения численности видов в экосистеме. Уменьшение видового разнообразия угрожает самому существованию вида в силу сокращения генетического разнообразия - запаса рецессивных аллелей, обеспечивающего приспособленность популяций к меняющимся условиям среды обитания. В свою очередь, видовое разнообразие служит основой экологического разнообразия - разнообразия экосистем. Совокупность генетического, видового и экологического разнообразия составляет биологическое разнообразие планеты.
Деятельность человека по влиянию на биологическое разнообразие планеты превосходит все известные в прошлом геологические катастрофы. Очень важно не допустить такого снижения биоразнообразия, которое привело бы к снижению устойчивости экосистем, перешло бы границы их самовосстановительных возможностей.
6.1 Пространственная структура экосистемы
Популяции разных видов в экосистеме распределены определенным образом - образуют пространственную структуру. Различают вертикальную и горизонтальную структуры экосистемы.
Основу вертикальной
структуры формирует
Растительное сообщество определяет, как правило, облик экосистемы. Растения в значительной мере влияют на условия существования остальных видов. В лесу это крупные деревья, на лугах и в степях - многолетние травы, а в тундрах господствуют мхи и кустарнички.
Обитая совместно, растения одинаковой высоты создают своего рода этажи - ярусы. В лесу, высокие деревья составляют первый (верхний) ярус, второй ярус формируется из молодых особей деревьев верхнего яруса и из взрослых деревьев, меньших по высоте. Третий ярус состоит из кустарников, четвертый - из высоких трав. Самый нижний ярус, куда попадает совсем мало света, составляют мхи и низкорослые травы [13].
Ярусность наблюдается также в травянистых сообществах (лугах, степях, саваннах). Имеется и подземная ярусность, что связано с разной глубиной проникновения в почву корневых систем растений: у одних корни уходят глубоко в почву, достигают уровня грунтовых вод, другие имеют поверхностную корневую систему, улавливающую воду и элементы питания из верхнего почвенного слоя [3].
Благодаря ярусному расположению растения наиболее эффективно используют световой поток, при этом снижается конкуренция: светолюбивые растения занимают верхний ярус, а теневыносливые развиваются под их пологом. Животные тоже приспособлены к жизни в том или ином растительном ярусе (некоторые вообще не покидают свой ярус). Например, среди насекомых выделяют: подземных, обитающих в почве (медведка, норный паук); наземных, поверхностных (муравей, щитник); обитателей травостоя (кузнечик, тля, божья коровка) и обитателей более высоких ярусов (различные мухи, стрекозы, бабочки). Вследствие неоднородности рельефа, свойств почвы, различных биологических особенностей растения и в горизонтальном направлении располагаются микрогруппами, различными по видовому составу. Это явление носит название мозаичности [18].
Благодаря вертикальной и горизонтальной структурам обитающие в экосистеме организмы более эффективно используют минеральные вещества почвы, влагу, световой поток.
6.2 Трофическая структура экосистемы
Виды, входящие в состав экосистемы, связаны между собой пищевыми связями, так как служат объектами питания друг для друга [23].
В водоеме продуцентами являются зеленые водоросли. Их поедают мелкие растительноядные ракообразные (дафнии, циклопы) - консументы (потребители) первого порядка. Этих животных потребляют в пищу плотоядные личинки различных водяных насекомых (например, стрекоз). Это консументы (потребители) второго порядка. Личинками питаются мелкие рыбы (например, плотва) - консументы (потребители) третьего порядка. А рыбы становятся добычей щуки - консумента (потребителя) четвертого порядка. Такую последовательность питающихся друг другом организмов называют пищевой, или трофической, цепью. Отдельные звенья трофической цепи называют трофическими уровнями.[10]
Пищевые цепи состоят, как правило, из трех - пяти звеньев, например: растения овцы человек; растения кузнечики ящерицы орел; растения насекомые лягушки змеи орел.
Различают
два типа трофических (пищевых) цепей.
Пищевые цепи, которые начинаются с растений,
идут через растительноядных животных
к другим потребителям, называют пастбищными или цепями выедания. Их примеры
приведены выше. Пищевые цепи другого
типа начинаются с отмерших растений,
трупов или помета животных и идут к мелким
животным и микроорганизмам. Эти цепи
называют детритными, или цепям
Линейные пищевые цепи - большая редкость в природе. Как правило, пищевые цепи в экосистеме тесно переплетаются. Совокупность пищевых связей в экосистеме образует пищевые сети, в которых многие консументы служат пищей нескольким членам экосистемы. В то же время некоторые животные могут принадлежать сразу к нескольким трофическим уровням, так как питаются и растительной, и животной пищей, то есть являются всеядными (например, медведь)[15].
Из-за сложной структуры пищевой сети исчезновение вида, почти не сказывается на экосистеме. Питавшиеся особями этого вида организмы находят другие источники пищи. А пищу, которую потребляли животные исчезнувшего вида, начинают использовать другие потребители. Это обеспечивает экосистеме длительное и устойчивое существование. И чем богаче видовая структура экосистемы, тем она устойчивее[22].
Пищевые сети, возникающие в экосистеме, имеют структуру, для которой характерно определенное число организмов на каждом трофическом уровне. Число организмов прямо пропорционально уменьшается при переходе с одного трофического уровня на другой. Такая закономерность получила название "правило экологической пирамиды". В данном случае рассмотрена пирамида чисел. Она может нарушаться, если мелкие хищники живут благодаря групповой охоте на крупных животных.
Для каждого трофического уровня характерна своя биомасса - суммарная масса организмов какой-либо группы. В пищевых цепях биомасса организмов на разных трофических уровнях различна: биомасса продуцентов (первый трофический уровень) значительно выше, чем биомасса консументов - растительноядных животных (второй трофический уровень). Биомасса каждого из последующих трофических уровней пищевой цепи также прогрессивно уменьшается. Эта закономерность получила название пирамиды биомасс.
7.1Пирамиды биомассы.
Неудобств, связанных с использованием пирамид численности, можно избежать путем построения пирамид биомассы, в которых учитывается суммарная масса организмов (биомассы) каждого трофического уровня. Определение биомассы включает не только учет численности, но и взвешивание отдельных особей, так что это более трудоемкий процесс, требующий больше времени и специального оборудования. Таким образом, прямоугольники в пирамидах биомассы отображают массу организмов каждого трофического уровня, отнесенную к единице площади или объема[19].
При отборе образцов - всегда определяется так называемая биомасса на корню, или урожай на корню. Важно понимать, что эта величина не содержит никакой информации о скорости образования биомассы (продуктивности) или ее потребления; иначе могут возникнуть ошибки по двум причинам:
Если скорость потребления биомассы (потеря вследствие поедания) примерно соответствует скорости ее образования, то урожай на корню не обязательно свидетельствует о продуктивности, т.е. о количестве энергии и вещества, переходящих с одного трофического уровня на другой за данный период времени, например за год. Например, на плодородном, интенсивно используемом пастбище урожай трав на корню может быть ниже, а продуктивность выше, чем на менее плодородном, но мало используемом для выпаса[22].
Продуцентом небольших размеров, таким, как водоросли, свойственна высокая скорость возобновления, т.е. высокая скорость роста и размножения, уравновешенная интенсивным потреблением их в пищу другими организмами и естественной гибелью. Таким образом, хотя биомасса на корню может быть малой по сравнению с крупными продуцентами (например, деревьями), продуктивность может быть не меньшей, так как деревья накапливают биомассу в течение длительного времени. Иными словами, фитопланктон с такой же продуктивностью, как у дерева, будет иметь намного меньшую биомассу, хотя он мог бы поддержать жизнь такой же массы животных. Вообще популяции крупных и долговечных растений и животных обладают меньшей скоростью обновления по сравнению с мелкими и короткоживущими и аккумулируют вещество и энергию в течение более длительного времени. Зоопланктон обладает большей биомассой, чем фитопланктон, которым он питается. Это характерно для планктонных сообществ озер и морей в определенное время года; биомасса фитопланктона превышает биомассу зоопланктона во время весеннего «цветения», но в другие периоды возможно обратное соотношение. Подобных кажущихся аномалий можно избежать, применяя пирамиды энергии.[19]
Аналогичную закономерность можно выявить при рассмотрении передачи энергии по трофическим уровням, то есть в пирамиде энергии. Растения усваивают в процессе фотосинтеза лишь незначительную часть солнечной энергии. Растительноядные животные, составляющие второй трофический уровень, усваивают лишь некоторую часть (20-60 %) от поглощенного корма. Усвоенная пища идет на поддержание процессов жизнедеятельности организмов животных и рост (например, на построение тканей, запасы в виде отложения жиров). Организмы третьего трофического уровня (хищные животные) при поедании растительноядных животных вновь теряют большую часть заключенной в пище энергии. Количество энергии на последующих трофических уровнях вновь прогрессивно уменьшается. Результатом этих потерь энергии является небольшое число (три-пять) трофических уровней в пищевой цепи. Подсчитано, что с одного трофического уровня на другой передается лишь около 10% энергии. Эта закономерность получила название "правило десяти процентов".
Таким образом, пирамида чисел отражает число особей в каждом звене пищевой цепи. Графически это правило изображают в виде пирамид с широким основанием и узкой вершиной. Пирамиду составляют прямоугольники, которые изображают разные звенья пищевой цепи.
Экосистема может быть
описана комплексной схемой пря
Иногда выделяют третий
аспект устойчивости — устойчивость экосистемы
по отношению к изменениям характеристик
среды и изменению своих внутренних характеристик[15].
В случае, если экосистема устойчиво функционирует
в широком диапазоне параметров окружающей среды и/или в
экосистеме присутствует большое число
взаимозаменяемых видов (то есть, когда различные виды, сходные
по экологическим функциям в экосистеме,
могут замещать друг друга), такое сообщество
называют динамически прочным (устойчивым). В обратном случае, когда
экосистема может существовать в весьма
ограниченном наборе параметров окружающей
среды, и/или большинство видов незаменимы
в своих функциях, такое сообщество называется динамически хрупким (неустойчивым)[15]. Необходимо отметить,
что данная характеристика в общем случае
не зависит от числа видов и сложности
сообществ. Классическим примером может
служить Большой Барьерный риф у берегов Австралии (северо-