Экологические проблемы, связанные с глобальными изменениями окружающей среды

Автор работы: Пользователь скрыл имя, 28 Марта 2012 в 20:20, контрольная работа

Описание работы

Учение о химических процессах - это область науки, в которой существует наиболее глубокое взаимопроникновение физики, химии и биологии. На этом уровне развития химических знаний химия становится наукой не только о веществах, как законченных предметах, а наукой о процессах и механизмах превращений веществ.
Благодаря этому химия обеспечила: много тоннажное производство синтетических материалов, заменяющих дерево и металл в строительных работах; пищевое сырье в производстве олифы, лаков, моющих средств и смазочных материалов; производство искусственных волокон, каучуков, этилового спирта и многих растворителей на базе нефтяного сырья; производство азотных удобрений на основе азота воздуха; появление технологии нефтехимических производств с ее поточными системами, обеспечивающими непрерывные высокопроизводительные процессы.

Содержание работы

1. Понятие о химических процессах. Проблемы и решения. стр. 3

2. Современные представления о Вселенной. Модель большого взрыва и расширяющейся вселенной. стр.11

3. Экологические проблемы, связанные с глобальными изменениями окружающей среды. стр. 23

Файлы: 1 файл

Теоретическая часть.doc

— 133.50 Кб (Скачать файл)

 

Содержание

 

 

1. Понятие о химических процессах. Проблемы и решения. стр. 3

 

2. Современные представления о Вселенной. Модель большого взрыва и расширяющейся вселенной. стр.11

 

3. Экологические проблемы, связанные с глобальными изменениями окружающей среды. стр. 23

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Понятие о химических процессах. Проблемы и решения.

 

              Учение о химических процессах - это область науки, в которой существует наиболее глубокое взаимопроникновение физики, химии и биологии. На этом уровне развития химических знаний химия становится наукой не только о веществах, как законченных предметах, а наукой о процессах и механизмах превращений веществ.

Благодаря этому химия обеспечила: много тоннажное производство синтетических материалов, заменяющих дерево и металл в строительных работах; пищевое сырье в производстве олифы, лаков, моющих средств и смазочных материалов; производство искусственных волокон, каучуков, этилового спирта и многих растворителей на базе нефтяного сырья; производство азотных удобрений на основе азота воздуха; появление технологии нефтехимических производств с ее поточными системами, обеспечивающими непрерывные высокопроизводительные процессы.

Среди большого количества проблем, решаемых на уровне учения о химических процессах, мы рассмотрим те проблемы, которые связаны с созданием методов управления процессами. Подавляющее большинство химических реакций – это чрезвычайно «строптивые кони», они находятся во власти стихии. Они неподатливы: в одних случаях их просто не удается осуществить, в других случаях их трудно остановить, например, реакции горения и взрыва, в третьих случаях их невероятно трудно ввести в одно желательное русло, т.к. они самопроизвольно создают десятки непредвиденных ответвлений с образованием нескольких побочных продуктов.

В основе учения о химических процессах находится химическая тер-модинамика (термодинамические методы которой позволили управлять химическими процессами только в аспекте их направления в прямую или обратную стороны) и кинетика (выполняющая функцию управления скоростью химических процессов).

Проблема катализа

Катализ как могучее посредничество «третьих тел» в осуществлении химических процессов был открыт в 1812 году К. С. Кирхгофом (1764-1833гг), впервые получившим с помощью катализатора - серной кислоты H2SO4 - из крахмала сахар.

С тех пор и до настоящего времени катализ в химии делает чудеса.

В 1964 году в связи с открытием новых катализаторов (KMgCl, TiCl4) была реализована возможность синтеза аммиака не при высоких температуре (4000 C) и давлении (808 мПа), что затрудняло технологическое исполнение процесса, а при обычных условиях: атмосферном давлении и комнатной температуре.

Но эта реакция может стать триумфом и третьего тысячелетия, т.к. открываются конкретные пути перенести ее из стен лабораторий в природу, на поля, где произрастают злаковые культуры - пшеница и рожь. Горох, фасоль и другие бобовые растения в своих клубеньках содержат «микрореактор» - азотобактер, извлекающий азот прямо из воздуха и перерабатывающий его в амины, являющиеся азотным питанием растений.

Теперь выяснено, что азотобактер действует по принципу связывания свободного азота посредством металлоорганических катализаторов типа RМе-Х, где R - органический радикал, Ме - металл, Х – остаток минеральной кислоты. Открытая в 1964 году реакция синтеза аммиака на металлорганических катализаторах создает предпосылки успешного моделирования азотобактера - включение искусственного азотофиксирующего аппарата посредством генной инженерии в соответствующие ткани злаковых растений. Растения смогут сами извлекать азот из воздуха, и сегодня это серьезно изучаемая научная проблема.

Победой катализа является появление целой отрасли химии, базирующейся на основе такого простейшего сырья, как оксид углерода СО и водород Н2. На одних катализаторах со 100%-ным выходом из СО и Н2 образуются парафины нормального строения, на других - только парафины разветвленного строения, на третьих - чистый метанол, на четвертых - уксусная кислота, на пятых - этилен и т.д. Роль катализаторов как своеобразных архитекторов проявилась в построении молекул полимеров.

В 1950-1960-х годах открыты металлоорганические катализаторы стереоспецифической полимеризации дивинила и изопрена. Это позволило по существу воспроизвести натуральный каучук.

Благодаря катализаторам стало возможным ввести в качестве сырья много тоннажного органического синтеза углеводороды нефти - парафины и циклопарафины, которые считались «химическими мертвецами». Благодаря катализу они превратились в практически неисчерпаемое сырье для получения СК и пластмасс, олифы и лаков, моющих веществ и растворителей, лекарственных и парфюмерных веществ, возможных горюче смазочных материалов.

Катализ находится в основании производства маргарина, многих пищевых продуктов, а также средств защиты растений.

Практически вся промышленность «основной химии» (производство неорганических кислот, оснований и солей) и «тяжелого органического синтеза», включая получение горюче-смазочных материалов, базируется на гетерогенном катализе, который осуществляется с помощью металлов, их сплавов и оксидов. Широкое применение за последние 40-30 лет приобрели цеолитовые (алюмосиликатные) катализаторы, обладающие широко развитой поверхностью и широкими пределами применения.

Теоретические представления о сущности катализа служат сегодня основным пунктом дальнейшего развития всей каталитической химии, и, прежде всего таких наиболее перспективных областей ее, как металлокомплексный катализ, межфазный катализ, мицеллярный (посредством коллоидных систем), мембранный катализ (с участием веществ, действующих как молекулярное сито) и катализ посредством ферментоподобных веществ.

 

Проблемы энергетики будущего

Современная энергетика в основном базируется на горючих ископаемых, каковыми являются каменный и бурый угли, сланцы, торф, нефть и газ. В настоящее время в мире добывается u1086 около 7 млрд. тонн условного топлива в год. Подсчитано, что этих запасов будет достаточно по одним данным на 80, а по другим - на 120-140 лет. Поэтому встает вопрос о новых источниках энергии.

Перспективой является превращение атомных электростанций ближайшего будущего в химико-энергетические комбинаты, ядерные реакторы которых одновременно с их основным назначением могли бы служить генераторами различных видов нейтронного излучения для радиохимического синтеза элементов, для облучения твердых тел с целью их упрочнения и, что особенно важно, для термического разложения воды на водород и кислород. Современные атомные электростанции нельзя считать верхом достижений атомной энергетики и энергетики вообще. Их основной недостаток - экологическая опасность, к тому же, основным ядерным топливом является изотоп U-235, доля которого в природном уране составляет 0,7%. Поэтому развитие атомной энергетики на основе современного поколения АЭС определяется ресурсами урана, которые по энергетическим запасам сравнимы с запасами нефти.

Совершенно новые возможности открываются перед человечеством с осуществлением управляемой термоядерной реакции. Неуправляемая термоядерная реакция - это водородная бомба, взрыв которой происходит в результате ядерного взаимодействия. Реакция протекает при температуре значительно выше 100.000.0000С. Поэтому удержать столь высоко разогретую массу, состоящую из ядер, протонов и нейтронов (плазма) невозможно. Это обстоятельство оказалось главным препятствием на пути осуществления управляемой термоядерной реакции. Существуют и другие препятствия, главным из которых является возможный перегрев поверхности Земли в результате выделения тепла термоядерными реакторами.

Речь идет о разумных экологических ограничениях производства термоядерной энергии в пределах не более чем 5% от солнечной энергии, поглощаемой Землей. Однако даже и в этих пределах производство термоядерной энергии поднимает u1088 разогрев земной поверхности на 3,70С.

Считают, что разогрев выше этой предельной температуры может привести к существенному изменению климата всей нашей планеты, даже всемирному потопу, за счет таяния льдов Антарктики и Гренландии.

Нужны меры по поиску экологически безупречных и практически неисчерпаемых источников энергии. Одной из таких мер является использование солнечной энергии. Около половины солнечной энергии рассеивается и поглощается атмосферой и около 10% задерживается в капельножидких и пылевых облаках. Остающаяся доля дошедшей до поверхности Земли солнечной энергии оказывается в десятки раз превышающей предельно допустимое производство термоядерной энергии.

Возникает задача химического преобразования солнечной энергии, т.е. задача аккумулирования солнечной энергии, ориентируясь на тот опыт, которым пользуется природа, а именно фотосинтез.

Есть смысл поставить задачу искусственного крупномасштабного получения на основе преобразования солнечной энергии такого химического топлива, каким является водород из воды: 22H2 + O2H2 O

Принципиально эта реакция осуществима. Практически для ее реализации требуется подача больших количеств энергии, т.к. энергия связи

Н – О в молекуле воды значительна (467 кДж/моль), поэтому термическое разложение воды начинается лишь при температуре выше 12000С и завершается при 2500-26000С.

Аналогичное количество электроэнергии требуется также и для электролитического разложения воды. Как же, однако, справляется с вовлечением в фотосинтез воды зеленый лист? Оказывается, что его фотокатализаторы действуют по принципу электролитического разложения воды. Разрабатываемые ныне искусственные молекулярные фото каталитические системы все более приближаются к природным фотосинтезирующим объектам не только по принципу их действия, но и по самой организации систем. Широкомасштабное преобразование солнечной энергии в энергию химических топлив поставлено на очередь дня. При этом надо иметь в виду, что водород является самым высококалорийным и экологически чистым топливом. Он удобен и для стационарной, и для транспортной энергетики. Бесспорно, - это универсальное топливо энергетики будущего.

 

Химия экстремальных состояний

В отличие от каталитической химии, особенностью которой является химическая активизация молекул реагента, т.е. расслабление исходных химических связей при взаимодействии с их катализатором, химия экстремальных состояний характеризуется энергетической активацией реагента, т.е. подачей энергии извне для полного разрыва исходных связей.

К химии экстремальных состояний относятся плазмохимия и радиационная химия (химия высоких энергий).

В плазмохимических процессах скорость перераспределения химических связей между реагирующими молекулами достигает оптимума, заданного природой: длительность элементарных актов химических превращений приближается в нем к 10-13 сек. при почти полном отсутствии обратимости реакции, тогда как во всех современных заводских реакторах такая скорость из-за обратимости снижается в тысячи и миллионы раз. Поэтому плазмохимические процессы исключительно высокопроизводительны.

Метановый плазмотрон с производительностью 75 тонн ацетилена в сутки имеет длину всего 65 см и диаметр 15 см., по сути, заменяет целый завод. При этом метан в нем при температуре 3000-3500 градусов за одну десятитысячную доли секунды превращается на 80% в ацетилен.

В настоящее время разработаны способы связывания атмосферного азота посредством плазмохимического синтеза оксидов азота, что может быть экономнее аммиачного метода по энергетическим затратам.

Создается плазмохимическая технология производства мелкодисперсных порошков - основного сырья для порошковой металлургии.

Плазмохимия позволяет получить такие материалы, которые до сих пор вообще не были известны человеку, например, металлобетон, где в качестве связующего используются сталь, чугун, алюминий. Плазменная технология позволяет путем оплавления частиц горной породы создать прочное сцепление этой породы с металлом, благодаря чему получаемый металлобетон прочнее обычного на сжатие в 10 и на растяжение в 100 раз.

В России разработаны плазмохимические процессы превращения угля в жидкое топливо, устраняющие применение высоких давлений и выбросы серы и золы.

Радиационная химия. Начало ее было положено облучением полиэтилена с целью придания ему большой прочности. Наиболее важными процессами радиационно-химической технологии являются полимеризация, вулканизация, производство композиционных материалов, в том числе композиций на древесной основе, закрепление лаков и других кроющих материалов на поверхности дерева и металла, получение полимербетонов путем пропитки обычного бетона тем или иным мономером с последующим облучением.

Принципиально новой и важной областью химии экстремальных состояний является самораспространяющийся высокотемпературный синтез (СВС) тугоплавких и керамических материалов.

Он основан на реакции горения одного металла в другом или металла в азоте, углероде, кремнии. Метод СВС - это результат развития тепловой теории процессов горения и взрыва в твердых телах. Он предусматривает своего рода горение, например, порошка титана в порошке бора с образованием боридов ТiВ и ТiВ2 или порошка циркония в порошке кремния с образование силицидов циркония ZrSi, ZrSi2. Методом СВС получены сотни тугоплавких соединений превосходного качества.

Характерной особенностью метода СВС является простота технологических установок, исключительно большая выгода в затратах энергии. По оценке американских специалистов, СВС - технология является высочайшим достижением русских ученых из Института химической физики Российской Академии наук.

Выводы

1. На третьем уровне развития химических знаний - учение о химических процессах - химия становится наукой о процессах и механизмах изменения веществ.

2. Катализ - могучее посредничество «третьих тел» в осуществлении химических процессов, способное творить чудеса в химии.

3. Азотобактер (в клубеньках бобовых растений) действует по принципу каталитического связывания свободного азота посредством металлоорганических катализаторов.

4. Катализаторы позволили ввести дешевые углеводороды нефти в качестве сырья для органического синтеза и получать из них синтетические каучуки, пластмассы, олифу, лаки, моющие средства и т.д.

5. Цеолитовые катализаторы обладают широко развитой поверхностью и избирательностью действия.

6. К перспективным областям каталитической химии относятся: металлокомплексный, межфазный, мембранный катализ и катализ веществами, подобными ферментам.

7. Водород является самым высококалорийным и экологически чистым топливом.

8. В плазмохимических процессах скорость перераспределения химических связей между реагирующими молекулами достигает оптимума, заданного природой.

9. Самораспространяющийся высокотемпературный синтез тугоплавких и керамических материалов основан на реакции горения одного металла в другом металле, металла в азоте, углероде или кремнии, что представляет собой принципиально новую область химии экстремальных состояний.

 

 

 

Современные представления о вселенной. Модель большого взрыва и расширяющейся вселенной.

 

              Наша планета – одна из планет Солнечной системы. Если Солнце представить в виде бильярдного шара диаметром 7 см, то ближайшая к солнцу планета – Меркурий находится от него в этом масштабе на расстоянии 280 см, Земля – на расстоянии 760 см, Юпитер – на расстоянии 40 м. Размеры Земли в этом масштабе около 0.5 мм. Ближайшая к нам звезда Проксима Центавра находится на расстоянии около 1.3 пк (1 парсек равен 3.26 светового года). В том масштабе, в котором мы изобразили Солнечную систему, это соответствует 2 тысячам км. Но окружающие Солнце звёзды и само Солнце – это ничтожно малая часть гигантского коллектива звёзд и туманностей, называемого «Галактикой». Расстояние от Солнца до ядра нашей галактики – около 30 тыс. световых лет. Вот цифры и масштабы, которыми приходится оперировать, когда мы говорим о макромире. Но Вселенная состоит из огромного количества даже не галактик, а метагалактик, являющихся скоплениями галактик. Собственно, метагалактика – это и есть известная в настоящее время Вселенная. Здесь масштабы и расстояния приобретают характер, совершенно не представимый человеческому воображению.

Самый серьезный удар по представлению о стационарности Вселенной был нанесен результатами измерений скоростей удаления галактик, полученными Хабблом. В 1929 г. после огромной работы по получению и изучению спектров галактик, а также по определению различными методами расстояний до этих галактик, Э. Хаббл надежно установил факт расширения Вселенной. Он показал, что в «разбегании» галактик существует замечательная закономерность. Чем дальше от нас находится галактика, тем с большей скоростью она удаляется, то есть тем больше её красное смещение. Причем закон имеет предельно простую линейную форму: v=HR, где v - скорость галактики, R - расстояние до нее, а Н - коэффициент пропорциональности, называемый постоянной Хаббла.

              Чтобы по достоинству оценить результат Хаббла, нужно помнить, что звезды не рассеяны во Вселенной равномерно: они, наоборот, сгруппированы в отдельные «острова» - галактики, каждая из которых включает в себя в среднем более 100 млрд. звезд, а также межзвездный газ и межзвездную пыль; галактики в большинстве своем имеют «правильную» форму спирали или эллипса, при этом диаметр галактики может достигать и даже превосходить 100000 световых лет. Млечный путь как раз представляет собой одну такую галактику, ту самую «Галактику», которая включает в себя в качестве незначительной периферийной звезды и наше Солнце. В действительно космическом масштабе мы имеем дело уже не со звездами, а с галактиками как отдельными объектами, расстояния до которых измеряются миллионами световых лет.

              Итак, Хаббл в результате целой серии кропотливых измерений обнаружил, что любая галактика удаляется от нас в среднем со скоростью, пропорциональной расстоянию до нее, с коэффициентом пропорциональности, равным примерно 20 км/с на миллион световых лет. Например, галактика, находящаяся на расстоянии в 100 млн. световых лет, удаляется от нас со скоростью 2000 км/с. Обнаружены квазары, которые удаляются от нас со скоростью 285000 км/с и которые, следовательно, находятся на расстояниях порядка 10 млрд. световых лет.

              Открытие Хаббла окончательно разрушило существовавшее со времен Аристотеля представление о статичной, незыблемой Вселенной, уже, впрочем, ранее получившее сильный удар при открытии эволюции звезд. Значит, галактики вовсе не являются космическими фонарями, подвешенными на одинаковых расстояниях друг от друга для утверждения сил небесных, и, более того, раз они удаляются, то когда-то в прошлом они должны были быть ближе к нам.

              Удаляясь со скоростью 20 км/с, галактика проходит примерно 600 млн. км за год, или 60 световых лет за миллион лет; на то, чтобы преодолеть (при постоянной скорости) тот миллион световых лет, который нас разделяет, ей, по-видимому, понадобилось несколько меньше, чем 20 млрд. лет. Следовательно, около 20 млрд. лет тому назад все галактики, судя по всему, были сосредоточены в одной точке, поскольку (согласно закону Хаббла) галактики, которые находятся на расстояниях в десять раз больше других, имеют в десять же раз большую скорость; следовательно, время удаления одинаково для всех галактик.

              Можно подойти к вопросу о хаббловском расширении космоса, используя более привычные, интуитивные образы. Например, представим себе солдат, выстроенных на какой-нибудь площади с интервалом 1 м. Пусть затем подается команда раздвинуть за одну минуту ряды так, чтобы этот интервал увеличился до 2 м. Каким бы образом команда ни выполнялась, относительная скорость двух рядом стоявших солдат будет равна 1 м/мин, а относительная скорость двух солдат, стоявших друг от друга на расстоянии 100 м, будет 100 м/мин, если учесть, что расстояние между ними увеличится от 100 до 200 м.

              Таким образом, скорость взаимного удаления пропорциональна расстоянию. Отметим, что после расширения рядов остается справедливым космологический принцип: «галактики-солдаты» по-прежнему распределены равномерно, и сохраняются те же пропорции между различными взаимными расстояниями. Единственный недостаток нашего сравнения заключается в том, что на практике один из солдат все время стоит неподвижно в центре площади, в то время как остальные разбегаются со скоростями тем большими, чем больше расстояния от них до центра. В космосе же нет верстовых столбов, относительно которых можно было бы провести абсолютные измерения скорости; такой возможности мы лишены теорией относительности: каждый может сравнивать свое движение только с движением рядом идущих, и при этом ему будет казаться, что они от него убегают.

              Мы видим, таким образом, что закон Хаббла обеспечивает неизменность космологического принципа во все времена, и это утверждает нас во мнении, что как закон, так и сам принцип действительно справедливы.

              Итак, после получения красных смещений галактики предстали перед нами удаляющимися от нашей Галактики, причем скорость удаления растет с увеличением расстояния. Означает ли это, что наша галактика является центром, из которого происходит это расширение? Вовсе нет. Наблюдатель в любой галактике увидел бы точно такую же картину: все галактики, несвязанные гравитационно с родной галактикой наблюдателя, имели бы красные смещения, пропорциональные расстоянию между галактиками. Действительно, увеличивается расстояние между всеми галактиками. Пространство «раздувается».

              Расширение Вселенной можно проиллюстрировать замечательным примером. Представьте себе двумерных существ, двумериков, живущих на поверхности воздушного шарика. Нарисуем на нем галактики и поселим в них этих двумериков. Пусть они могут наблюдать в свои телескопы соседние галактики. Начнем теперь надувать шарик. Каждый двумерик-наблюдатель в своей галактике будет видеть, что другие галактики удаляются от него. Сам же центр расширения на поверхности шарика, то есть в Метагалактике двумериков, отсутствует.

              Как уже говорилось, чем дальше находятся участки Вселенной, тем быстрее они от нас удаляются; галактики представляются нам такими, какими они были в далеком прошлом, поскольку свету, идущему от них, требуется время, чтобы до нас дойти. Таким образом, большие телескопы совершают, кроме всего прочего, путешествие в прошлое. Наблюдая все более далекие объекты, мы видим, как они разлетаются со скоростями, которые все ближе и ближе к непреодолимому барьеру - скорости света. Существуют квазары - объекты, крайне яркие и видимые на громадных расстояниях, - которые удаляются со скоростями в 285000 км/с, что лишь немного меньше скорости света, равной 300000 км/с.

              Если бы мы могли увидеть какие-нибудь объекты, «приставленные к стенке скорости света», то они бы выглядели так же, как у истоков Вселенной. Но не все объекты, содержащиеся во Вселенной, можно будет когда-нибудь увидеть; свет от объектов, расположенных дальше определенного расстояния, так и не успевает дойти до нас, и они навсегда остаются скрытыми от наших взоров, так же как слишком далекое здание на поверхности Земли скрыто за горизонтом.

              Но, если все галактики удаляются от нашей, не означает ли это, что Земля - центр Вселенной? Ответ по-прежнему отрицательный. Расстояния между любыми галактиками увеличиваются со скоростями, пропорциональными самим расстояниям, и человек, оказавшийся случайно в пределах другой галактики, обнаружит справедливость того же закона Хаббла. При этом его горизонт окажется смещенным, и он сможет увидеть то, что скрыто от нас, в то время как другие объекты, видимые с Земли, будут скрыты от него.

              Согласно общей теории относительности Эйнштейна, присутствие вещества в пространстве приводит к искривлению последнего. При наличии достаточного количества вещества можно построить модель искривленного пространства, напоминающего искривленную поверхность Земли.

              Передвигаясь на Земле в одном направлении, мы, в конце концов, пройдя 40000 км, должны вернуться в исходную точку. В искривленной Вселенной случится то же самое, но спустя 40 млрд. световых лет; кроме того, «роза ветров» не ограничивается четырьмя частями света, а включает направления также вверх - вниз, или, точнее, зенит - надир. Итак, Вселенная напоминает надувной шарик, на котором нарисованы галактики и, как на глобусе, нанесены параллели и меридианы для определения местоположения точек; но в случае Вселенной для определения положения галактик необходимо использовать не два, а три измерения. А можно ли взглянуть внутрь надувного шарика? Для этого пришлось бы выйти в четвертое измерение, чего никто делать не умеет и хотя можно использовать и шесть измерений, все мы, в конце концов, сходимся на том, что речь здесь идет лишь о некой игре слов, а всю физическую сторону этого вопроса вполне можно осознать, будучи, так сказать, нарисованными на поверхности такого воздушного шарика.

              Расширение Вселенной напоминает процесс надувания этого шарика: взаимное расположение различных объектов на его поверхности не меняется; на шарике нет выделенных точек; площадь, на которой были выстроены солдаты, теперь представляет всю Вселенную; площадь эта весьма странная: выходим через калитку на север, а, возвращаясь, обнаруживаем, что появляемся на площади с южной стороны и т. д.

              Рентгеновские лучи равномерно со всех сторон облучают Землю. Наблюдения показали, что они возникают всякий раз, как пыль, газ и звёзды, разрушенные гравитационными силами, поглощаются чёрной дырой. Чёрные дыры превосходят по массе все известные в мироздании тела. Из окружающей её окрестности чёрная дыра высасывает гигантские количества материи: в каждую минуту проглатывается масса, равная нашему земному шару. Столкновение частиц при этом рождает рентгеновское излучение. Почти все рентгеновские лучи приходят из далёкого прошлого, когда шло энергичное образование звёзд. Можно полагать, что чёрные дыры появились вскоре после первоначального взрыва, породившего нашу Вселенную, но до того как возникли первые звёзды. Вероятно, что сверхмассивные чёрные дыры стали в последующем центрами галактик. Уже определено более 30 галактик, заключающих в себе эти образования[i].

              Мир галактик не только велик, но и разнообразен. Они резко различаются размерами, внешним видом и числом входящих в них звёзд, светимостью. Основоположником внегалактической астрономии, которая занимается этими вопросами, по праву считается американский астроном Эдвин Хаббл (1889-1953). Он доказал, что многие туманности на самом деле не что иное, как галактики, состоящие из множества звёзд. Он изучил свыше тысячи галактик и определил расстояние до некоторых из них. Среди галактик выделил три основных типа: спиральные, эллиптические и неправильные.

              Более половины галактик - спиральные. В центре их находится яркое ядро (большое тесное скопление звёзд). Из ядра выходят спиральные, закручивающиеся вокруг него ветви, состоящие из молодых звёзд и облаков нейтрального газа. Все ветви лежат в плоскости вращения галактики. Поэтому она имеет вид сплющенного диска.

Эллиптические галактики на фотографиях выглядят как эллипсы с разной степенью сжатия. Примерно четверть из наиболее ярких галактик относится к их числу.

Неправильные галактики отличаются хаотической клочковатой структурой и не имеют какой-либо определённой формы. Хотя неправильные галактики самый немногочисленный класс галактик, исследование их очень важно. Астрофизика постоянно обнаруживает в них что-нибудь интересное: вспышка сверхновой в Большом Магеллановом облаке, открытия в туманности Тарантул

Прокручивая ретроспективно киноленту о жизни Вселенной, мы могли бы увидеть, что было время, а именно около 25 млрд. лет тому назад, когда все галактики были собраны вместе в одной точке. Разумеется, к такой оценке нужно относиться с осторожностью и представлять, что она справедлива только по порядку величины. Во-первых, гравитационное притяжение непрерывно замедляет движение галактик; во-вторых, почти наверняка галактики сами образовались лишь примерно через миллиард лет после начала расширения. Но остается фактом, что Вселенная когда-то начинала свое развитие, будучи намного более плотной и, занимая область намного меньшую, чем в настоящее время; ее эволюцию можно сравнить разве что с гигантским взрывом глобального масштаба - с так называемым «Большим взрывом». Примечательно, что указанный масштаб времени, в общем, согласуется с результатами, полученными при исследовании эволюции звезд.

Наличие разбегания галактик в настоящее время требует предположения о том, что в прошлом вещество Вселенной было более плотным. Экстраполяция наблюдаемых скоростей на значительно более ранние периоды позволяет оценить время, когда это расширение началось в результате Большого Взрыва - около 25 млрд. лет назад. Известные на сегодняшний день законы физики позволяют воспроизвести достаточно правдоподобный сценарий расширения, начиная с нескольких тысячных секунды после Большого Взрыва (что происходило до этого, напр. предшествовало ли ему сжатие предыдущего цикла, на современном этапе развития естествознания не обсуждается, поскольку не может быть хотя бы косвенно проверено экспериментом).

Теория горячей Вселенной была первоначально разработана Г. А. Гамовым и др. для объяснения наблюдаемого химического состава Вселенной. Ведь первоначально все вещество представляло собой в основном водородную плазму, а затем, в эпоху так называемого нуклеосинтеза, образовались ядра более тяжелых химических элементов - различных изотопов гелия и лития. К ядрам водорода, которые представляют собой одиночные протоны, примешались также более сложные ядра дейтерия - тяжелого изотопа водорода. Так в нашем мире появилось разнообразие химических элементов. Однако пройдет еще немало времени, прежде чем образуются первые звезды, в которых в процессе эволюции родится все многообразие химических элементов, наблюдаемых сегодня.

Какой же была Вселенная в момент своего рождения? Наш вопрос имеет смысл, только если он относится к мгновению, следующему непосредственно за началом, то есть к моменту времени, когда применение физических законов становится уже разумным. Спустя всего одну сотую секунды после начала космос занимал гораздо меньший объем, чем теперь, и был заполнен сжатым веществом при температуре в миллиарды градусов с плотностью в триллионы раз выше, чем плотность воды. В этих условиях не могли существовать ни ядра, ни тем более атомы, которые были бы разрушены бурным тепловым движением. Расширение Вселенной происходило с очень большой скоростью. Через несколько минут расширение Вселенной и ее охлаждение достигли такой степени, что стало возможным образование атомных ядер. Спустя еще миллион лет температура упала ниже трех тысяч градусов, и началось образование атомов. Бросив взгляд вокруг себя в ту эпоху, мы увидели бы пространство, заполненное облаком из раскаленных газов и ослепляющим светом. Еще через миллиард лет началось образование галактик, звезд и стабильного вещества в современном виде.

Свет, излученный первоначальным газовым облаком, все еще бродит во Вселенной; претерпев сильные изменения при расширении Хаббла, он сейчас заметен только в виде микроволнового фона (так называемого «реликтового излучения»). Это самое древнее из всех известных свидетельств истории нашей Вселенной. Оно было обнаружено двумя астрофизиками из лаборатории фирмы «Белл телефон» Пензиасом и Уилсоном, удостоенными за свое открытие Нобелевской премии в 1978 г.

Нуклеосинтез стал еще одним шагом к «нашему», привычному миру. Это произошло, когда Вселенной было «уже» 100 секунд. К тому времени наш мир продолжал расширяться и остывать. Вещество существовало в форме плазмы, когда электроны отделены от ядер атомов. Привычный для нас вид вещество во Вселенной приняло в так называемую эпоху рекомбинации. Эта эпоха ознаменовалась замечательным событием - температура упала ниже 10000 градусов и плазма превратилась в обычный, нейтральный газ. При этом вещество освободилось от «бремени» излучения, и стало развиваться уже по-своему. Дело в том, что когда вещество непрерывно взаимодействует с излучением, ионизируется им, то не образуются конденсации вещества и сложные структуры в нем. Будучи «свободным», вещество начинает структурироваться, «скучиваться». Эти сгущения служат основой той сложной структуры, которую мы сейчас наблюдаем.

Излучение, также освободившееся от вещества, получило возможность практически беспрепятственно двигаться по всей Вселенной. Благодаря этому мы сейчас можем поймать древние кванты электромагнитного излучения и в принципе пронаблюдать все события в развивающейся Вселенной после эпохи рекомбинации. Но как же тогда образовались более тяжелые элементы в природе, в том числе и те, из которых состоит наша Земля и человеческое тело? Более тяжелые элементы образовались в недрах звезд. Элементы легче железа образовались в результате термоядерного синтеза в звездах, а тяжелее железа - в результате вспышек сверхновых.

В первые моменты температура Вселенной была столь высока, что в ней могли существовать лишь самые легкие элементарные частицы: фотоны, нейтрино и т.д. Быстрое расширение горячего сжатого «газа» вело к его охлаждению. Уже на первых секундах расширения стало возможным образование электронов и протонов, существующих в виде горячей плазмы и сильно взаимодействующих друг с другом и излучением, на долю которого приходилась основная доля энергии во Вселенной. Таким образом, на ранней стадии, длящейся около одного млн. лет, во Вселенной преобладали электромагнитные и ядерные  взаимодействия.

Спустя указанный срок температура упала до величины, допускающей рекомбинацию электронов с протонами в нейтральные атомы водорода. С этого момента взаимодействие излучения с веществом практически прекратилось, доминирующая роль перешла к гравитации. Возникшее на стадии горячей Вселенной и постепенно остывающее в результате ее расширения излучение дошло до нас в виде реликтового фона.

На последующей стадии «холодной» Вселенной на фоне продолжающегося расширения и остывания вещества стали возникать гравитационные неустойчивости: за счет флуктуаций плотности водородного газа стали возникать зоны его уплотнения, притягивающие к себе газ из соседних областей и еще больше усиливающие собственное гравитационное поле. Самоорганизация вещества во Вселенной (сложная неравновесная система, описываемая нелинейными уравнениями гравитации) в конечном итоге привела к возникновению крупномасштабной квазиупорядоченной межгалактической ячеистой структуры, а ее дальнейшая фрагментация дала начало будущим галактикам и звездам. Анализ деталей этого процесса возможен на основании весьма сложных уравнений гидрогазодинамики - теории нестационарного движения вещества и до сих пор удовлетворительно не разработан. Достаточно ясно, что в результате гравитационного сжатия выделяющаяся энергия в конечном итоге приводила к вторичному разогреву водородного топлива до температур, достаточных для начала термоядерных реакций водородного цикла.

Первая стадия жизни звезды подобна солнечной - в ней доминируют реакции водородного цикла. Температура звезды определяется ее массой и степенью гравитационного сжатия, которому противостоит главным образом световое давление. Звезда образует относительно устойчивую колебательную систему, ее периодические слабые сжатия и расширения определяют звездные циклы. По мере выгорания водорода в центре звезды, ее гелиевое ядро остывает, а зона протекания реакции синтеза перемещается на периферию. Звезда «разбухает», поглощая планеты ее системы, и остывает, превращаясь в красного гиганта.

Дальнейшее сжатие гелиевого ядра поднимает его температуру до зажигания реакций гелиевого цикла. Водородная оболочка постепенно рассеивается, образуя звездную туманность, а сильно сжатое ядро раскаляется до высоких температур, соответствующих свечению бело-голубым светом («белый карлик»). По мере выгорания топлива звезда угасает, превращаясь в устойчивого «черного карлика» - характерный итог эволюции большинства звезд с массой порядка солнечной.

Более массивные звезды на этапе превращения в белого карлика теряют водородную оболочку в результате мощного взрыва, сопровождающегося многократным увеличением светимости («сверхновые звезды»). После выгорания их ядер сил давления в плазме оказывается недостаточно для компенсации гравитационных сил. В результате уплотнения вещества электроны «вдавливаются» в протоны с образованием нейтральных частиц. Возникает нейтронная звезда - компактное (радиус несколько километров) и массивное образование, вращающееся с фантастически высокой для космических объектов скоростью: около одного оборота в секунду. Вращающееся вместе со звездой его магнитное поле посылает в пространство узконаправленный луч электромагнитного (часто- рентгеновского) излучения, действуя подобно маяку. Источники мощного периодического излучения, открытые в радиоастрономии, получили название пульсаров.

Звезды с массой, превосходящей массу Солнца более чем в два раза, обладают столь сильным гравитационным полем, что на стадии нейтронной звезды их сжатие не останавливается. В результате дальнейшего неограниченного сжатия - гравитационного коллапса звезда уменьшается до таких размеров, что скорость, необходимая для ухода тела с ее поверхности на бесконечность превышает предельную (скорость света). При этом ни одно тело (даже свет) не может покинуть непрерывно сжимающуюся звезду, представляющую собой «черную дыру», размерами всего несколько километров. Существование черных дыр допускают уравнения общей теории относительности. В области черной дыры пространство-время сильно деформировано.

Астрономические наблюдения чёрных дыр затруднены, поскольку такие объекты не излучают свет. Однако обнаружены звезды, совершающие движение, характерное для компонент двойных звезд, хотя парной звезды не наблюдается. Весьма вероятно, что её роль играет черная дыра или не излучающая нейтронная звезда.

Помимо перечисленных обнаружен ряд астрофизических объектов, свойства которых не укладываются в приведенные схемы - квазары. Наблюдаемое их излучение аналогично пульсарному, но очень сильно смещено в красную область. Величина красного смещения указывает на то, что квазары находятся так далеко, что их наблюдаемая яркость соответствует излучению, превосходящему по интенсивности излучения галактического скопления. В то же время наличие быстрых изменений интенсивности ставит вопрос о механизме согласования излучения элементами системы, размеры которой должны составлять тысячи световых лет.

 

 

 

Экологические проблемы, связанные с глобальными изменениями окружающей среды.

 

Человек появился в ходе эволюции биосферы. Он – ее элемент. Появление разума, по-видимому, закономерный этап в развитии живой материи, коренной перелом в ее эволюции, ибо она получила способность мыслить и познавать себя. Все необходимое для жизни человек получает из биосферы. Туда же он сбрасывает бытовые и промышленные отходы. Долгое время Природа справлялась с теми нарушениями, которые человек вносил в ее деятельность и сохраняла равновесие. В настоящее время деятельность человека стала соизмеримой с силами Природы и она уже не способна выдерживать напор преобразующей деятельности человека. Это приводит к формированию глобального экологического кризиса, сопровождающегося обострением так называемых глобальных экологических проблем, к которым относятся проблема народонаселения («демографический взрыв»), изменение состава атмосферы и климата, изменение состояния водных систем, истощение природных ресурсов. Рассмотрим эти проблемы подробнее.

1. Рост народонаселения. Сейчас на Земле – 5,5 млрд. человек. В 20-м веке темп роста народонаселения резко увеличился и только за последние 40 лет человечество выросло более чем в два раза. Если рассматривать темы роста человечества за всю его историю, то четко прослеживается экспоненциальный характер зависимости численности населения от времени. В настоящее время появились тенденции к сокращению темпа роста населения (пунктирная кривая), однако он все еще продолжает оставаться высоким. По прогнозам демографов, к 2025 г. на Земле будет от 7,6 до 9,4 млрд. человек. Основная доля прироста населения приходится и будет приходится на развивающиеся страны. такой рост населения приведет к еще большему давлению человечества на ОС и, по-видимому, еще больше обострит существующие на сегодняшний день экологические проблемы. Дело в том, что у всех живых организмов существуют пределы роста, обусловленные т.н. экологической емкостью территорий, и человек не является исключением. Каковы эти пределы для человека? К настоящему времени разработаны так называемые ресурсная и биосферная модель мировой системы. По ресурсной модели население Земли не должно превышать 7,0 –7,5 млрд. человек, а по биосферной – 10 млрд.

2. Изменение состава атмосферы. На первом месте среди загрязнителей атмосферы стоит энергетика (80). Энергетика – основа цивилизации и без производства достаточного количества энергии человечество не сможет существовать и развиваться. Сегодня главный производитель энергии – теплоэлектростанции (ТЭС), их доля в общем производстве энергии составляет около 63%. Доля ГЭС составляет около 20%, доля АЭС – около 17%. Существенную роль в загрязнении атмосферы играет транспорт и выбросы промышленных предприятий. Вносят свою лепту и лесные пожары, до 95% которых обусловлено человеческой неосторожностью. Загрязнение атмосферы, в свою очередь порождает такие проблемы, как парниковый эффект и потепление климата, истощение озонового слоя, закисление природных сред.

Парниковый эффект. Ежегодно в атмосферу выбрасывается 1,5 млрд. т аэрозолей (пыль, дым, туман), миллиарды тонн СО2 и СО. Углекислый газ пропускает к Земле тепло Солнца, но хуже пропускает в космос тепло Земли. Аналогично влияние метана, который также выбрасывается в атмосферу. Результат – повышение температуры на Земле (потепление). За последние 100 лет оно составило 0,5 – 0,6оС. Это приводит к усилению процессов опустынивания и повышению уровня Мирового океана.

Закисление природных сред. Выбрасываемые в атмосферу диоксиды серы и азота доокисляются в атмосфере и, растворяясь в воде, образуют серную и азотную кислоты, выпадая затем на землю с дождем, снегом, туманом. Кислотные дожди губительны для растений, лесов и рыбных водоемов. Попадая на почву, они вызывают повышение ее кислотности, что нарушает жизнедеятельность микроорганизмов.

Истощение озонового слоя. Как было сказано ранее, озоновый слой находится на высоте 20 – 25 км над поверхностью Земли и защищает нас от губительного ультрафиолетового излучения Солнца. В последние годы наблюдается циклический процесс снижения концентрации озона в приполярных областях (вначале над Антарктидой, а затем и в северном полушарии). Это явление получило название «озоновых дыр». Оно носит сезонный характер, до сих пор нет четкого описания его механизма. Главными «виновниками» разрушения озонового слоя на сегодняшний день считаются хлорфторуглероды (ХФУ), которые используются в холодильной промышленности (фреон) и в производстве аэрозолей. Они разлагаются с выделением атомов хлора, которые ускоряют превращение озона в молекулярный кислород О2.

Истощение ресурсов. Среди разнообразных ресурсов нашей планеты в рамках этой лекции отметим леса – одно из величайших богатств Земли. На протяжении последних 50 лет наблюдается уменьшение площади лесов на 1-2% ежегодно, а за последние 200 лет их количество уменьшилось вдвое. Особенно быстро идет разрушение тропических лесов, в которых сосредоточено до 60% существующих видов растений и животных. Этот процесс чрезвычайно опасен еще и потому, что тропические леса Амазонки, Юго-Восточной Азии, а также леса Сибири называют легкими планеты – настолько велик их вклад в образование атмосферного кислорода.

Истощение грозит и водным ресурсам планеты. Потребление воды постоянно растет, однако использование и охрана водных ресурсов далеки от оптимальных решений. Так, большой отбор воды на орошение из рек Средней Азии привел к катастрофе Аральского моря. Соль со дна высохшего моря разносится ветром на сотни километров, вызывая засоление почв. За последние годы высохли сотни естественных водоемов Приаралья. Подобные проблемы существуют и на других территориях. Беспокойство вызывает загрязнение водоемов сточными водами – отходами промышленных предприятий. Из-за аварий танкеров и нефтепроводов в ОС ежегодно попадает более 5 млн. тонн нефти. Нефтяные пленки, кроме прямого вреда, замедляют обмен гидросферы и атмосферы, что приводит к гибели жизни в океане.

Несовершенство сельскохозяйственной технологии ведет к сокращению площадей плодородных земель. Распаханный плодородный слой смывается сточными водами и сильно развеивается ветом, если вспашка произведена с переворотом пласта. Распашка обширных степных земель в СССР и США стала причиной пыльных бурь и гибели миллионов гектаров плодородных земель.

Огромные отрицательные последствия для ОС связаны с военной активностью. Здесь сказывается разрушительное влияние как непосредственно военных действий, так и гонки вооружений, сопряженной с изготовлением и хранением химически, биологически и энергетически опасных веществ.

В этих условиях биосфера стала утрачивать свои компенсационные свойства и не успевает залечивать раны, наносимые ей. Выход из экологического кризиса видится в реализации понятия «ноосфера», введенного В.И. Вернадским для обозначения биосферы, преобразованной трудом человека и измененной научной мыслью. Главные компоненты ноосферы – это человечество, производство и Природа, составляющие единую систему, так как человечество не может отказаться от научно-технического прогресса и вернуться в первобытное состояние. Общий подход к решению экологических проблем – достижение сбалансированного развития человечества путем реализации программ по предотвращению экологических катастроф. к таким программам можно отнести сдерживание роста населения, развитие новых малоотходных технологий производства, поиск новых, более «чистых» источников энергии и т.п.

Основная проблема, связанная с загрязнением окружающей среды, обусловлена термодинамическими ограничениями, заложенными в самой природе. Причины загрязнения ОС можно свести к следующим.

1. Неэффективное использование энергии, либо использование так называемых «деградированных форм энергии» для получения энергии более высокого качества, что требует привлечения огромных мощностей. Потребляя запасенную в природных структурах энергию нефти, газа и угля, человек вносит в биосферу хаос и разрушает ту упорядоченность (энергию химических связей высокомолекулярных соединений), которую создала свободная энергия солнечного излучения.

2. Рост мощностей для удовлетворения растущих потребностей современного общества.

Первые две причины объясняют, почему самой разрушительной по своему воздействию на природу из всех областей человеческой деятельности является энергетика.

Следующие причины связаны с предыдущими, однако, они не носят абсолютного характера и являются субъективными, т.е. зависящими от сознания и воли людей.

3. Использование неэффективных преобразователей энергии.

4. Нежелание поставщиков энергии перерабатывать вторичные продукты.

Действие этих причин можно значительно ослабить на путях научно-технического прогресса, хотя это требует значительных средств и определенной перестройки общественного сознания.

Из рассмотренного ранее вопроса о термодинамике живых систем следует, что негэнтропия, т.е. отрицательная энтропия, одной из составляющих которой является высококачественная энергия, необходима как в качестве фундамента жизни, так и для обеспечения производственной деятельности человечества. Негэнтропия является необходимым условием существования направленных процессов и образования упорядоченных структур. Для того, чтобы не возникало противоречий между деятельностью человека и объективными тенденциями развития материального мира, человек должен научиться правильному использованию запасов негэнтропии. А эта задача связана, прежде всего, с оптимальным выбором источников энергии.

В течение долгого времени традиционные источники негэнтропии – непосредственно солнечное излучение и его опосредованные формы: падающая вода, сила ветра приливов и отливов, природные топлива – поставляли человеку все необходимые для определенного уровня развития общества блага. Оптимальное расстояние от Земли до Солнца – этого гигантского термоядерного реактора обусловило возникновение и развитие жизни на нашей планете.

Обычно показателем технического развития общества служит количество потребляемой в единицу времени (обычно за год) энергии DE(t). Однако, из вышесказанного следует, что правильнее было бы оценивать потребление негэнтропии, исходя из реально возможных запасов негэнтропии. Это означает, что необходимо использовать объективные критерии научно-технического прогресса наряду со степенью истощения природных ресурсов и загрязнения ОС.

Из второго начала термодинамики следует, что любая машина теряет энергию, однако, можно использовать наиболее эффективные источники энергии, например, гравитационную энергию (энергия приливов, водопадов) для преобразования ее в электрическую. ( В настоящее время доля этих источников энергии в экономике индустриально развитых стран не превышает 8%). Хотя процесс деградации энергии неизбежен, 2-е начало не запрещает с помощью внешней работы преобразовывать продукты деградации в менее опасные. При этом возникает потребность в разработке и строительстве специальных устройств для переработки отходов, при этом важную роль должна сыграть информация, которая поддается преобразованию и «усилению». Дело в том, что даже деградированные формы массы (вещества – побочных продуктов, продуктов разложения) и энергии могут принять участие в процессах по организации информации. Примером такого организующего эффекта деградированных форм энергии и массы является генетическая мутация, получившая название «индустриальный меланизм». В загрязненной среде мутанты обладают наибольшими шансами на выживание. Загрязнение изменило характер многих экосистем, распределение живых организмов стало зависеть от характера загрязнения, а это тоже информация. Проблема в том, как оптимально использовать эти явления и управлять ими. В настоящее время информационный подход эффективно используется в системе экологического мониторинга – автоматизированного слежения и контроля параметров окружающей среды.

Роль информатизации общества. Энергетические затраты на производство информации невелики по сравнению с выигрышем, получаемым в энерго- и материалоемких процессах, управляемых с ее помощью. Это ярко проявляется в ходе так называемой информационной революции нашего времени. Так всего за три десятилетия быстродействие ЭВМ выросло более чем в 200 раз и продолжает расти, на несколько порядков вырос объем машинной памяти, причем предел эффективности ЭВМ еще далеко не достигнут. В то же время, не оправдались надежды на переход к так называемым безбумажным технологиям благодаря введению электронного документооборота. Наоборот, во всем мире расход бумаги резко возрос, что, безусловно, усиливает негативные воздействия на окружающую среду.

Разнообразие и устойчивость. Для самопроизвольно развивающейся экологической системы существует тенденция к усложнению, к вытеснению низкоорганизованных видов высокоорганизованными. Это проявляется в виде экологической сукцессии: пустое поле зарастает сначала сорняком, потом – цветами, кустарниками, деревьями, которые становятся все более разнообразными по видам. Система стремится к своему наиболее зрелому состоянию – климаксу. Экосистемы приобретают более длинные цепи питания, и взаимосвязи внутри системы усиливаются. Энергия в таких системах используется наиболее эффективно, так как все составляющие ее части оптимально «подогнаны» друг к другу. Таким образом, наиболее устойчивы те системы, которые состоят из максимального числа видов. Это относится и к человеческому обществу, разнообразие которого – залог его устойчивости и развития.

3

 


[i] 

Информация о работе Экологические проблемы, связанные с глобальными изменениями окружающей среды