Автор работы: Пользователь скрыл имя, 04 Октября 2009 в 16:48, Не определен
Морская вода – очень подвижная среда, поэтому в природе она находится в непрерывном движении. Это движение вызывают различные причины и прежде всего ветер. Он возбуждает поверхность течения в океане, которые переносят огромные массы воды из одних районов в другие. Однако непосредственное влияние ветра распространяется на сравнительно небольшое (до 300 м) расстояние от поверхности. Подвижность вод океана проявляется и в вертикальных колебательных движениях – таких, например, как волны и приливы. С последними связаны и горизонтальные движения воды – приливные течения. Ниже в толще воды и в придонных горизонтах перемещение происходит медленно и имеет направления, связанные с рельефом дна.
Антарктическое циркумполярное течение приводится в действие господствующими здесь западными ветрами, а его средняя скорость и расход воды определяются балансом между касательной силы ветра на поверхности и силой трения о дно. Установлено, что над понижениями дна течение отклоняется к югу, а над поднятиями - к северу, что указывает на несомненное влияние рельефа дна на направление этого течения.
Наиболее хорошо выраженные адвективные потоки воды в глубоководной области океанов отмечаются вдоль западных границ бассейнов [1].
Горизонтальное поступательное перемещение вод в океанах и морях обобщенно называют морскими течениями. Они создаются под воздействием различных природных факторов. Морские течения на поверхности океанов и морей вызываются главным образом ветром (ветровые течения). Его касательное напряжение создает трение, а движущийся воздух оказывает давление на водную поверхность. В результате этого верхний слой воды толщиной около 1,5 км начинает перемещаться в пространстве. Если ветер, вызвавший течение, устойчиво действует длительное время примерно в одном направлении, то образуется постоянное течение. Оно может распространяться на 1000 км. Если ветер, образующий течение, действует кратковременно, то создается эпизодическое случайное течение, существующее лишь сравнительно небольшое время. Главную роль в Мировом океане играют постоянные течения. Именно они осуществляют обмен водами между различными частями океана, именно они переносят тепло и соли, т.е. обеспечивают единство Мирового океана.
Перемещение вод в пространстве создает температурные различия течений. Соответственно они подразделяются на: теплые течения – их вода теплее окружающих вод; холодные – их вода холоднее окружающих вод; нейтральные – их вода близка по температуре к окружающим водам.
Основные характеристики морского течения: скорость (V м/с) и направление. Последнее определяется обратным способом по сравнению со способом определения направления ветра, т.е. в случае с течением указывается, куда течет вода (северо-восточное течение идет на северо-восток, южное – на юг и т.п.), тогда как в случае с ветром указывается, откуда он дует (северный ветер дует с севера, западный с запада и т.д.).
По направлению движения вод течения бывают прямолинейные, когда воды перемещаются по относительно прямым линиям, и круговые, образующие замкнутые окружности. Если движение в них направлено против часовой стрелки, то это – циклонические течения, а если по часовой стрелке – то антициклонические, иногда их называют антициклональными.
Морские течения охватывают всю толщу вод от поверхности до дна Мирового океана. По глубине своего протекания они подразделяются соответственно на поверхностные, глубинные и придонные. Скорость движения наиболее высока в самом верхнем (0 – 50 м) слое. Глубже она снижается. Глубинные воды движутся значительно медленнее, а скорость перемещения придонных вод 3 – 5 см/с. Скорости течений неодинаковы в разных районах океана.
Горизонтальное движение вод океана приближенно характеризуется симметрией относительно экватора, хотя в каждом полушарии имеются свои особенности.
В тропической зоне Мирового океана, где господствуют пассаты северо-восточного направления в Северном полушарии и юго-восточного – в Южном, по обе стороны экватора возникают мощные пассатные течения. Под действием силы Кориолиса они приобретают широтное направление и пересекают с востока на запад Атлантический, Индийский (кроме его северной тропической части) и Тихий океаны. В Северном полушарии – это Северное пассатное течение, его средняя скорость 80 см/с, а в Южном – Южное пассатное течение, его средняя скорость 95 см/с . Пассатные течения переносят большие массы воды, что создает ее нагон и соответственно повышает уровень у восточных берегов материков. Вследствие этого происходит отток воды у побережий и между Северным и Южным течениями образуется Межпассатное (экваториальное) противотечение, скорости которого в разных районах составляют от 50 до 130 см/с . Оно находится на 2 – 8˚ с.ш., что связано с асимметричностью расположения материков и океанов.
В Южном полушарии примерно около 50˚ ю.ш. постоянные и сильные западные ветры вызывают мощное Антарктическое циркумполярное течение (течение Западных ветров). Оно идет с запада на восток со средней скоростью 25 – 75 см/с, окаймляя южные части Атлантического, Индийского и Тихого океанов, т.е. охватывает все океанские пространства этой части земного шара.
Таким образом, Северное и Южное пассатные течения, Межпассатное (экваториальное) противотечение и Антарктическое циркумполярное течение – основные течения Мирового океана в целом.
В Мировом океане хорошо выражены вихревые движения вод, различные по происхождению, размерам и т.п. Так, основная струя Гольфстрима движется не прямолинейно, а образует горизонтальные волнообразные изгибы – меандры. Длина волны между гребнями 35 – 370 км. Вследствие неустойчивости потока меандры иногда отделяются от Гольфстрима севернее мыса Гаттерас и образуются самостоятельно существующие вихри. Их диаметр 100 – 300 км, толщина от тысячи до нескольких тысяч метров, продолжительность существования от нескольких месяцев до нескольких лет, скорость движения воды может достигать 300 см/с. Слева от струи Гольфстрима образуются теплые антициклонические вихри, а справа от нее – холодные циклонические. И те и другие дрейфуют со средней скоростью около 7 км/сут в сторону, противоположную направлению самого течения.
В северной Атлантике обнаружены вихри, созданные рельефом дна и ветрами. Они бывают циклонические и антициклонические, имеют диаметр порядка 100 км, захватывают слой воды толщиной порядка сотен метров и перемещаются со скоростями примерно несколько километров в сутки. Распространены в открытых районах океана[3].
Таблица
1
Основные течения Мирового океана
Название | Температурная градация | Устойчивость | Средняя скорость,
см/с |
Тихий океан | |||
Северное
пассатное
Минданао Куросио Северо-Тихоокеанское Аляска Алеутское Курило-Камчатское (Ойясио) Калифорнийское Межпассатное (экваториальное) противотечение Южное пассатное Восточно-Австралийское Южно-Тихоокеанское Перуанское Антарктическое циркумполярное |
Нейтральное
Нейтральное Теплое Нейтральное Теплое Нейтральное Холодное Холодное Нейтральное Нейтральное Теплое Холодное Холодное Нейтральное |
Устойчивое
Устойчивое Весьма устойчивое Устойчивое Устойчивое Неустойчивое Устойчивое Неустойчивое Устойчивое Устойчивое Устойчивое Слабо устойчивое Слабо устойчивое Устойчивое |
80
30 35 35 15 15 25 12 50 – 130 95 20 5 – 25 – 75 |
Индийский океан | |||
Южное
пассатное
Агульясское (Игольного мыса) Западно-Австралийское Антарктическое циркумполярное |
Нейтральное Теплое Холодное Нейтральное |
Устойчивое Весьма устойчивое Неустойчивое Устойчивое |
– 70 – 25 – 75 |
Северный Ледовитый океан | |||
Норвежское
Западно-Шпицбергенское Восточно-Гренландское Западно-Гренландское |
Теплое
Теплое Холодное Теплое |
Устойчивое
Устойчивое Устойчивое Устойчивое |
–
– 50 – |
Атлантический океан | |||
Северное
пассатное
Гольфстрим Северо-Атлантическое Канарское Ирмингера Лабрадорское Межпассатное противотечение Южное пассатное Бразильское Южно-Атлантическое Бенгальское Фолклендское Антарктическое циркумполярное |
Нейтральное
Теплое Теплое Холодное Теплое Холодное Нейтральное Нейтральное Теплое Нейтральное Холодное Холодное Нейтральное |
Устойчивое
Весьма устойчивое Весьма устойчивое Устойчивое Устойчивое Устойчивое Устойчивое Устойчивое Устойчивое Устойчивое Устойчивое Устойчивое Устойчивое |
25
75 50 50 – 75 75 95 25 65 25 – 25 |
Термин происходит от английского слова upwelling, переводящегося как «всплывание», и означает вертикальное восходящее движение воды (рис.2). Это явление играет очень большую роль в процессе обмена поверхностных и глубинных вод океана. Глубинные воды, богатые биогенными веществами, выходя к поверхности в освещенную, эвфотическую зону, дают возможность увеличить продуктивность водной массы, так как при этом возрастает количество первичной продукции. Фитопланктон в процессе жизнедеятельности переводит неорганические соединения в органические – первичную продукцию, которая служит началом дальнейшего развития биоты, первым звеном пищевых цепей. Кроме того, фитопланктон производит и кислород, обеспечивающий жизнь не только в океане, но и на всей Земле. Поэтому образно океан можно назвать «легкими планеты» – океан дает кислорода в атмосферу гораздо больше, чем леса всей суши.
Рис.2.Апвеллинг
Апвеллинги возникают в результате особой динамики вод: в открытом океане – в районах дивергенции течений, а в прибрежной зоне апвеллинги – это эффект, порождаемый сгонными ветрами.
В зонах дивергенции, где потоки расходятся в стороны, в компенсацию ушедшей воды всплывают нижние воды. Процесс идет медленно, вертикальные скорости имеют порядок 10-5 см/с и выделить воды апвеллинга здесь трудно. Поэтому апвеллинги открытого моря очень слабо изучены.
В Тихом океане довольно отчетливо выделены зоны дивергенции: субтропическая, северная тропическая, южная тропическая и субантарктическая. Но это выделение производится лишь по системе течений, по физическим же характеристикам эти области почти не отличаются от окружающих вод.
Кроме указанных постоянных апвеллингов, в открытом океане могут существовать области временных апвеллингов, возникающих в результате воздействия рельефа дна и атмосферных барических систем. Последние, как правило, непостоянны и существуют в течение нескольких суток.
Гораздо большее значение имеют апвеллинги прибрежные. Они бывают двух типов: один связан с внешним воздействием, вызван ветром, а другой создается процессами в водах самого океана.
Ветровой апвеллинг вызывается сгоном, уходом поверхностной воды от берега в открытый океан, что понижает уровень воды у берега, и в компенсацию на поверхность выходят воды из нижних слоев. Это наиболее обычный вид апвеллинга.
Внутренние же причины, порождающие апвеллинг, – это особенности движения вод, не связанные с ветром: внутренние волны и усиление прибрежных вдольбереговых течений.
По характеру устойчивости различают квазистационарные, сезонные, синоптические и периодические (или квазипериодические) апвеллинги.
В районе апвеллинга наблюдается подразделение вод на три слоя: поверхностные, толщиной 10 – 40 м, с заметной скоростью – 10 – 30 см/с, двигающиеся от берега; подповерхностный, с меньшей скоростью – 2 – 20 см/с, двигающийся к берегу, занимающий всю толщу воды до 30 – 10 м от дна; придонный слой с течением, сходящим к нулю у дна.
Ширина зоны апвеллинга зависит от района и факторов, создающих апвеллинг. Обычно наиболее интенсивный подъем вод происходит в полосе 10 – 30 км от берега, причем скорость вертикального потока составляет 10-2 см/с, а глубина распространения – 25 – 50 м. Внешний край зоны апвеллинга представляет собой гидрологический фронт, формируемый большими горизонтальными градиентами солености, температуры, а также течениями.
Сложность динамической картины в апвеллинге еще усиливается существованием в тонком поверхностном слое поперечных течений, которые уходят от берега в открытый океан на десятки и даже сотни километров. Природа их не выяснена, а наблюдаются они не во всех апвеллингах.
В Мировом океане существует несколько стационарных прибрежных апвеллингов, расположенных, как правило, у западных окраин материков: в Атлантическом океане это Канарский (Западно-Африканский), Гвинейский, Бенгальский, Бразильский, Южно-Африканский. Последний можно отнести и к Индийскому океану, в котором есть еще и Сомалийский апвеллинг. В Индийском океане выделение зон апвеллинга довольно трудно, потому что в северной его части динамика вод определяется циркуляцией атмосферы, характеризующейся периодичностью смены муссонов – юго-западного и северо-восточного. Это вызывает смену направления течений. В Тихом океане существует обширный стационарный Перуанский апвеллинг, менее обширный Калифорнийский и сезонный Орегонский.
Обнаружен апвеллинг и в Северном Ледовитом океане – он расположен в море Бофорта. Этот апвеллинг характерен тем, что на поверхность из глубины поднимается не холодная, а теплая вода атлантического происхождения («теплая прослойка»). Есть основания думать, что апвеллинг есть и на северных окраинах сибирских арктических морей, где существует «великая сибирская полынья». Это наиболее вероятный путь включения тепла атлантической промежуточной прослойки в процесс теплообмена в водах Северного Ледовитого океана. Именно так отдается атлантическое тепло: ведь входит в океан вода температуры 4 – 3˚С, а выходит (Восточно-Гренландское течение) вода температуры – 1,5 – 1,9˚С.