Источники искусственного освещения

Автор работы: Пользователь скрыл имя, 15 Декабря 2014 в 13:31, реферат

Описание работы

Назначение искусственного освещения – создать благоприятные условия видимости, сохранить хорошее самочувствие человека и уменьшить утомляемость глаз. При искусственном освещении все предметы выглядят иначе, чем при дневном свете. Это происходит потому, что изменяется положение, спектральный состав и интенсивность источников излучения.

Содержание работы

Введение
1. Виды искусственного освещения
2 Функциональное назначение искусственного освещения
3 Источники искусственного освещения. Лампы накаливания
3.1Типы ламп накаливания
3.2 Конструкция лампы накаливания
3.3 Преимущества и недостатки ламп накаливания
4. Газоразрядные лампы. Общая характеристика. Область применения. Виды
4.1 Натриевая газоразрядная лампа
4.2 Люминесцентная лампа
4.3 Ртутная газоразрядная лампа
Список литературы

Файлы: 1 файл

БЖД.docx

— 140.25 Кб (Скачать файл)

Источники искусственного освещения

 

 

 

 

СОДЕРЖАНИЕ

 

Введение

1. Виды искусственного освещения

2 Функциональное назначение искусственного  освещения

3 Источники искусственного освещения. Лампы накаливания

3.1Типы ламп накаливания

3.2 Конструкция лампы накаливания

3.3 Преимущества и недостатки  ламп накаливания

4. Газоразрядные лампы. Общая характеристика. Область применения. Виды

4.1 Натриевая газоразрядная лампа

4.2 Люминесцентная лампа

4.3 Ртутная газоразрядная лампа

Список литературы

 

 

 

 

 

 

 

 

 

Введение

 

Назначение искусственного освещения – создать благоприятные условия видимости, сохранить хорошее самочувствие человека и уменьшить утомляемость глаз. При искусственном освещении все предметы выглядят иначе, чем при дневном свете. Это происходит потому, что изменяется положение, спектральный состав и интенсивность источников излучения.

История искусственного освещения началась тогда, когда человек стал использовать огонь. Костер, факел и лучина стали первыми искусственными источниками света. Затем появились масляные лампы и свечи. В начале XIX века научились выделять газ и очищенные нефтепродукты, появилась керосиновая лампа , которая используется по сегодняшний день.

При зажигании фитиля возникает светящееся пламя. Пламя испускает свет только тогда, когда твердое тело нагревается этим пламенем. Не горение порождает свет, а лишь вещества, доведенные до раскаленного состояния, излучают свет. В пламени свет излучают раскаленные частички сажи. В этом можно убедиться, если поместить стекло над пламенем свечи или керосиновой лампы.

На улицах Москвы и Петербурга осветительные масляные фонари появилось в 30-х годах XVIII века. Затем масло заменили спиртово-скипидарной смесью. Позднее, в качестве горючего вещества, стали использовать керосин и, наконец, светильный газ, который получали искусственным путем. Световая отдача таких источников была очень мала из-за низкой цветовой температуры пламени. Она не превышала 2000К.

По цветовой температуре искусственный свет сильно отличается от дневного, и это различие давно было замечено по изменению цвета предметов при переходе от дневного к вечернему искусственному освещению. В первую очередь было замечено изменение цвета одежды. В ХХ веке с широким распространением электрического освещения изменение цвета при переходе к искусственному освещению уменьшилось, но не исчезло.

Сегодня редкий человек знает о заводах, производивших светильный газ. Газ получали при нагревании каменного угля в ретортах. Реторты – это большие металлические или глиняные полые сосуды, которые наполняли углем и нагревали в печи. Выделившийся газ очищали и собирали в сооружениях для хранения светильного газа – газгольдерах.

Более ста лет назад, в 1838 году, «Общество освещения газом Санкт-Петербурга» построило первый газовый завод. К концу XIX века почти во всех крупных городах России появились газгольдеры. Газом освещали улицы, железнодорожные станции, предприятия, театры и жилые дома. В Киеве инженером А.Е.Струве газовое освещение было устроено в 1872году.

Создание электрогенераторов постоянного тока с приводом от паровой машины позволило широко использовать возможности электричества. В первую очередь изобретатели позаботились об источниках света и обратили внимание на свойства электрической дуги, которую впервые наблюдал Василий Владимирович Петров в 1802 году. Ослепительно яркий свет позволял надеяться, что люди смогут отказаться от свечей, лучины, керосиновой лампы и даже газовых фонарей.

В дуговых светильниках приходилось постоянно пододвигать поставленные «носами» друг к другу электроды – они достаточно быстро выгорали. Сначала их сдвигали вручную, затем появились десятки регуляторов, самым простым из которых был регулятор Аршро. Светильник состоял из неподвижного положительного электрода, закрепленного на кронштейне, и подвижного отрицательного, соединенного с регулятором. Регулятор состоял из катушки и блока с грузом.

При включении светильника через катушку протекал ток, сердечник втягивался в катушку и отводил отрицательный электрод от положительного. Дуга поджигалась автоматически. При уменьшении тока втягивающее усилие катушки уменьшалось и отрицательный электрод поднимался под действием груза. Широкого распространения эта и другие системы не получили из-за низкой надежности.

В 1875 году Павел Николаевич Яблочков предложил надежное и простое решение. Он расположил угольные электроды параллельно, разделив их изолирующим слоем. Изобретение имело колоссальный успех, и «свеча Яблочкова» или «Русский свет» нашел широкое распространение в Европе.

Искусственное освещение предусматривается в помещениях, в которых недостаточно естественного света, или для освещения помещения в часы суток, когда естественная освещенность отсутствует.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.Виды искусственного  освещения

 

Искусственное освещение может быть общим (все производственные помещения освещаются однотипными светильниками, равномерно расположенными над освещаемой поверхностью и снабженными лампами одинаковой мощности) и комбинированным (к общему освещению добавляется местное освещение работах мест светильниками, находящимися у аппарата, станка, приборов и т. д.). Использование только местного освещения недопустимо, так как резкий контраст между ярко освещенными и неосвещенными участками утомляет глаза, замедляет процесс работы и может послужить причиной несчастных случаев аварий.

2.Функциональное назначение  искусственного освещения

 

По функциональному назначению искусственное освещение подразделяется на рабочее, дежурное, аварийное.

Рабочее освещение обязательно во всех помещениях и на освещаемых территориях для обеспечения нормальной работы людей и движения транспорта.

Дежурное освещение включается во вне рабочее время.

Аварийное освещение предусматривается для обеспечения минимальной освещенности в производственном помещении на случай внезапного отключения рабочего освещения.

В современных многопролетных одноэтажных зданиях без световых фонарей с одним боковым остеклением в дневное время суток применяют одновременно естественное и искусственное освещение (совмещенное освещение). Важно, чтобы оба вида освещения гармонировали одно с другим. Для искусственного освещения в этом случае целесообразно использовать люминесцентные лампы.

3. Источники искусственного  освещения. Лампы накаливания.

 

В современных осветительных установках, предназначенных для освещения производственных помещений, в качестве источников света применяют лампы накаливания, галогенные и газоразрядные.

Лампа накаливания— электрический источник света, светящимся телом которого служит так называемое тело накала (тело накал- проводник, нагреваемый протеканием электрического тока до высокой температуры). В качестве материала для изготовления тела накала в настоящее время применяется практически исключительно вольфрам и сплавы на его основе. В конце XIX - первой половине XX в. Тело накала изготавливалось из более доступного и простого в обработке материала — углеродного волокна.

 

3.1 Типы ламп накаливания

 

Промышленность выпускает различные типы ламп накаливания:

вакуумные, газонаполненные (наполнитель смесь аргона и азота), биспиральные, с криптоновым наполнением .

 

3.2 Конструкция лампы  накала

 

Рис.1 Лампа накаливания

 

Конструкция современной лампы. На схеме: 1 - колба; 2 - полость колбы (вакуумированная или наполненная газом); 3 - тело накала; 4, 5 - электроды (токовые вводы); 6 - крючки-держатели тела накала; 7 - ножка лампы; 8 - внешнее звено токоввода, предохранитель; 9 - корпус цоколя; 10 - изолятор цоколя (стекло); 11 - контакт донышка цоколя.

Конструкции лампы накала весьма разнообразны и зависят от назначения конкретного вида ламп. Однако общими для всех ламп накала являются следующие элементы: тело накала, колба, токовводы. В зависимости от особенностей конкретного типа лампы могут применяться держатели тела накала различной конструкции; лампы могут изготавливаться бесцокольными или с цоколями различных типов, иметь дополнительную внешнюю колбу и иные дополнительные конструктивные элементы.

 

 

 

 

 

3.3 Преимущества и недостатки  ламп накаливания

 

Преимущества:

 

-малая стоимость

-небольшие размеры

-ненужность пускорегулирующей  аппаратуры

-при включении они зажигаются  практически мгновенно

-отсутствие токсичных компонентов  и как следствие отсутствие  необходимости в инфраструктуре  по сбору и утилизации

-возможность работы как на  постоянном токе (любой полярности), так и на переменном

-возможность изготовления ламп  на самое разное напряжение (от  долей вольта до сотен вольт)

-отсутствие мерцания и гудения  при работе на переменном токе

-непрерывный спектр излучения

-устойчивость к электромагнитному  импульсу

-возможность использования регуляторов  яркости

-нормальная работа при низкой  температуре окружающей среды

Недостатки:

-низкая световая отдача

-относительно малый срок службы

-резкая зависимость световой  отдачи и срока службы от  напряжения

-цветовая температура лежит  только в пределах 2300—2900 K, что  придаёт свету желтоватый оттенок

-лампы накаливания представляют  пожарную опасность. Через 30 минут  после включения ламп накаливания  температура наружной поверхности  достигает в зависимости от  мощности следующих величин: 40 Вт  — 145°C, 75 Вт — 250°C, 100 Вт — 290°C, 200 Вт  — 330°C. При соприкосновении ламп  с текстильными материалами их  колба нагревается еще сильнее. Солома, касающаяся поверхности  лампы мощностью 60 Вт, вспыхивает  примерно через 67 минут.

-световой коэффициент полезного  действия ламп накаливания, определяемый  как отношение мощности лучей  видимого спектра к мощности  потребляемой от электрической  сети, весьма мал и не превышает 4%

4. Газоразрядные лампы. Общая характеристика. Область применения. Виды

 

В последнее время принято называть газоразрядные лампы разрядными лампами. Подразделяются на разрядные лампы высокого и низкого давления. Подавляющее большинство разрядных ламп работают в парах ртути. Обладают высокой эффективностью преобразования электрической энергии в световую. Эффективность измеряется отношении люмен/Ватт.

Разрядные источники света (газоразрядные лампы) постепенно вытесняют привычные ранее лампы накаливания, однако недостатками остаются линейчатый спектр излучения, утомляемость от мерцания света, шум пускорегулирующей аппаратуры (ПРА), вредность паров ртути в случае попадания в помещение при разрушении колбы, невозможность мгновенного перезажигания для ламп высокого давления.

В условиях продолжающегося роста цен на энергоносители и удорожания осветительной арматуры, ламп и комплектующих все более насущной становится потребность во внедрении технологий, позволяющих сократить непроизводственные затраты.

Общая характеристика газоразрядных ламп

-Срок службы от 3000 часов до 20000.

-Эффективность от 40 до 150 лм/Вт.

-Цвет излучения: тепло-белый (3000 K) или нейтрально-белый (4200 K)

-Цветопередача: хорошая (3000 K: Ra>80) , отличная (4200 K: Ra>90)

-Компактные размеры излучающей  дуги, позволяют создавать световые  пучки высокой интенсивности

Области применения газоразрядных ламп.

-Магазины и витрины, офисы и  общественные места

-Декоративное наружное освещение: освещение зданий и пешеходных  зон

-Художественное освещение театров, кино и эстрады (профессиональное  световое оборудование)

Виды газоразрядных ламп.

Наибольшей эффективностью, на сегодняшний день, обладают лампы разрядные в парах натрия. Кроме этого вида разрядных ламп широко распространены люминесцентные лампы (разрядные лампы низкого давления), металлогалогенные лампы, дуговые ртутные люминесцентные лампы. Меньше распространены лампы в парах ксенона.

 

4.1 Натриевая газоразрядная  лампа

 

Натриевая газоразрядная лампа (НЛ) - электрический источник света, светящимся телом которого служит газовый разряд в парах натрия. Поэтому преобладающим в спектре таких ламп является резонансное излучение натрия; лампы дают яркий оранжево-жёлтый свет. Эта специфическая особенность НЛ (монохроматичность излучения) вызывает при освещении ими неудовлетворительное качество цветопередачи. Из-за особенностей спектра НЛ применяются в основном для уличного освещения, утилитарного, архитектурного и декоративного. Применение НЛ для освещения производственных и общественных зданий крайне ограничено и обуславливается, как правило, требованиями эстетического характера.

В зависимости от величины парциального давления паров натрия лампы подразделяют на натриевые лампы низкого давления (НЛНД) и натриевые лампы высокого давления (НЛВД)

Исторически первыми из натриевых ламп были созданы натриевые лампы низкого давления (НЛНД). В 1930-х гг. этот вид источников света стал широко распространяться в Европе. В СССР велись эксперименты по освоению производства НЛНД, существовали даже модели, выпускавшиеся серийно, однако внедрение их в практику общего освещения прервалось из-за освоения более технологичных ламп ДРЛ, которые, в свою очередь, стали вытесняться НЛВД.

НЛНД отличаются рядом особенностей, существенно затрудняющих как их производство, так и эксплуатацию. Во-первых, пары натрия при высокой температуре дуги весьма агрессивно воздействуют на стекло колбы, разрушая его. Из-за этого горелки НЛНД обычно выполняются из боросиликатных стёкол. Во-вторых, эффективность НЛНД сильно зависит от температуры окружающей среды. Для обеспечения приемлемого температурного режима горелки последняя помещается во внешнюю стеклянную колбу, играющую роль «термоса».

Информация о работе Источники искусственного освещения