Защита информации в локальных и глобальных компьютерных сетях

Автор работы: Пользователь скрыл имя, 06 Июня 2015 в 13:39, курсовая работа

Описание работы

Internet - глобальная компьютерная сеть, охватывающая весь мир. Сегодня Internet имеет около 15 миллионов абонентов в более чем 150 странах мира. Ежемесячно размер сети увеличивается на 7-10%. Internet образует как бы ядро, обеспечивающее связь различных информационных сетей, принадлежащих различным учреждениям во всем мире, одна с другой.Если ранее сеть использовалась исключительно в качестве среды передачи файлов и сообщений электронной почты, то сегодня решаются более сложные задачи распределеного доступа к ресурсам

Содержание работы

Введение………………………………………………………………………………………….....2
Защита информации в локальной сети.
1. Пути и методы защиты информации в системах обработки данных
1.1Пути несанкционированного доступа, классификация способов и средств защиты информации
1.1.1Средства защиты информации
1.1.2Способы защиты информации
1.2Анализ методов защиты информации в ЛВС
1.2.1Защита информации в ПЭВМ. Каналы утечки информации
1.2.2Организационные и организационно-технические меры защиты информации в локальных вычислительных сетях
1.2.3 Основные методы защиты ПЭВМ от утечек информации по электромагнитному каналу
1.2.4Идентификация и аутентификация
1.2.5Управление доступом
1.2.6Протоколирование и аудит
1.2.7 Криптография
1.2.8 Экранирование
1.3Основные направления защиты информации в ЛВС
1.3.1Меры непосредственной защиты ПЭВМ
1.3.2Идентификация и установление личности
1.3.3 Защита против электронного и электромагнитного перехвата
1.3.4 Основные понятия безопасности компьютерных систем
1.3.5 Современные программные угрозы информационной безопасности
1.3.6Основные типы угроз вычислительным системам
1.3.7Анализ и классификация удаленных атак в ЛВС
VPN Защита информации в глобальной сети.
1. Проблема защиты информации.
2. Информационная безопасность и информационные технологии.
3. Средства защиты информации.
3.1. Solstice Firewall-1.
3.1.1. Назначение экранирующих систем и требования к ним.
3.1.2. Структура системы Solstice Firewall-1.
3.1.3. Пример реализации политики безопасности.
3.1.4. Управление системой Firewall-1.
3.1.5. Еще один пример реализации политики безопасности.
3.1.6. Аутентификация пользователей при работе с FTP.
3.1.7. Гибкие алгоритмы фильтрации UDP–пакетов, динамическое экранирование.
3.1.8. Язык программирования. Прозрачность и эффективность.
3.2. Ограничение доступа в WWW серверах.
3.2.1. Ограничения по IP–адресам.
3.2.2. Ограничения по идентификатору получателя.
3.3. Информационная безопасность в Intranet.
3.3.1. Разработка сетевых аспектов политики безопасности.
3.3.2. Процедурные меры.
3.3.3. Управление доступом путем фильтрации информации.
3.3.4. Безопасность программной среды.
3.3.5. Защита Web–серверов.
3.3.6. Аутентификация в открытых сетях.
3.3.7.Простота и однородность архитектуры.
3.4. PGP.
3.5. Blowfish.
3.6. Kerberos.
4. Виртуальные частные сети (VPN).
4.1. Совместимость.
4.2. Безопасность.
4.3. Доступность.
4.4. Управляемость.
4.5. Архитектура.

Файлы: 1 файл

setevye_tekhnologii_Vosstanovlen.doc

— 170.50 Кб (Скачать файл)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Забайкальский государственный университет»

(ФГБОУ ВПО «ЗабГУ»)

Энергетический факультет

Кафедра тепловых электрических станций

 

 

 

 

 

 

 

 

 

КУРСОВАЯ РАБОТА

 

по дисциплине информационные технологии

 

тема: «Защита информации в локальных и глобальных компьютерных сетях»

 

 

 

 

 

 

 

 

 

Выполнил студент группы ТЭСб-14 

Абидуев Аюша Ачигтуевич

 

Руководитель работы: ст. преподаватель   Розова Светлана Николаевна

 

 

 

 

 

 

 

 

 

 

 

Чита

2015

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Забайкальский государственный университет»

(ФГБОУ ВПО «ЗабГУ»)

Энергетический факультет

Кафедра тепловых энергетических станций

 

 

ЗАДАНИЕ

на курсовую работу

 

По дисциплине информационные технологии

 

Студенту Абидуеву Аюше Ачигтуевичу

 

направления подготовки 140100.62 – «Теплоэнергетика и теплотехника»

 

1 Тема курсовой работы  «Защита информации в локальных  и глобальных компьютерных сетях»

 

2 Срок подачи студентом законченной  работы 04.06.2015

 

3 Исходные  данные к работе:

Список используемых источников

1. Сбиба В.Ю, Курбатов В.А. Руководство по защите от внутренних угроз информационной безопасности. – СПб: Питер, 2008

2. Костров, Д.В. Информационная безопасность в рекомендациях, требованиях, стандартах. 2008

 

4 Перечень подлежащих разработке  в курсовой работе вопросов:

  1. Защита информации в локальной сети
  2. Защита информации в глобальной сети

 

Дата выдачи задания 02.02.2015 г.

Руководитель курсовой работы _______________ / Розова С.Н

 

Задание принял к исполнению 02.02.2015 г.

 

Подпись студента _______________ / Аюша Ачигтуевич Абидуев /

(И.О.Ф.) 

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Забайкальский государственный университет»

(ФГБОУ ВПО «ЗабГУ»)

Энергетический факультет

Кафедра тепловые энергетические станции

 

 

 

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе

 

по дисциплине информационные технологии

 

на тему «Защита информации в локальных и глобальных компьютерных сетях»

 

 

 

Выполнил студент группы ТЭСб-14 Абидуев Аюша Ачигтуевич

 

 

 

 

 

 

Руководитель работы: ст. преподаватель   Розова Светлана Николаевна

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Содержание

 

Введение………………………………………………………………………………………….....2

Защита информации в локальной сети.

1. Пути и методы защиты информации  в системах обработки данных

1.1Пути несанкционированного доступа, классификация способов и средств  защиты информации

1.1.1Средства защиты информации

1.1.2Способы защиты информации

1.2Анализ методов защиты информации  в ЛВС

1.2.1Защита информации в ПЭВМ. Каналы утечки информации

1.2.2Организационные и организационно-технические  меры защиты информации в локальных вычислительных сетях

1.2.3 Основные методы защиты ПЭВМ  от утечек информации по электромагнитному каналу

1.2.4Идентификация и аутентификация

1.2.5Управление доступом

1.2.6Протоколирование и аудит

1.2.7 Криптография

1.2.8 Экранирование

1.3Основные направления защиты  информации в ЛВС

1.3.1Меры непосредственной защиты  ПЭВМ

1.3.2Идентификация и установление  личности

1.3.3 Защита против электронного  и электромагнитного перехвата

1.3.4 Основные понятия безопасности  компьютерных систем

1.3.5 Современные программные угрозы информационной безопасности

1.3.6Основные типы угроз вычислительным  системам

1.3.7Анализ и классификация удаленных атак в ЛВС

VPN Защита информации в глобальной сети.

1.    Проблема защиты информации.

2.    Информационная безопасность и информационные технологии.

3.    Средства защиты информации.

3.1. Solstice Firewall-1.

3.1.1. Назначение экранирующих систем  и требования к ним.

3.1.2. Структура системы Solstice Firewall-1.

3.1.3. Пример реализации политики  безопасности.

3.1.4. Управление системой Firewall-1.

3.1.5. Еще один пример реализации  политики безопасности.

3.1.6. Аутентификация пользователей при работе с FTP.

3.1.7. Гибкие алгоритмы фильтрации UDP–пакетов, динамическое         экранирование.

3.1.8.    Язык программирования. Прозрачность и эффективность.

3.2.     Ограничение доступа в WWW серверах.

3.2.1. Ограничения по IP–адресам.

3.2.2. Ограничения по идентификатору  получателя.

3.3.     Информационная безопасность в Intranet.

3.3.1. Разработка сетевых аспектов  политики безопасности.

3.3.2. Процедурные меры.

3.3.3. Управление доступом путем  фильтрации информации.

3.3.4. Безопасность программной среды.

3.3.5. Защита Web–серверов.

3.3.6. Аутентификация в открытых сетях.

3.3.7.Простота и однородность  архитектуры.

3.4. PGP.

3.5. Blowfish.

3.6. Kerberos.

4.    Виртуальные частные сети (VPN).

4.1.     Совместимость.

4.2.     Безопасность.

4.3.     Доступность.

4.4.     Управляемость.

4.5.     Архитектура.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Internet - глобальная компьютерная сеть, охватывающая весь мир. Сегодня Internet имеет около 15 миллионов абонентов  в более чем 150 странах мира. Ежемесячно  размер сети увеличивается на 7-10%. Internet образует как бы ядро, обеспечивающее связь различных информационных сетей, принадлежащих различным учреждениям  во всем  мире, одна с другой.Если ранее сеть использовалась исключительно в качестве среды передачи файлов и сообщений электронной почты, то сегодня решаются более сложные задачи распределеного доступа к ресурсам. Около двух лет назад были созданы оболочки, поддерживающие функции сетевого поиска и доступа к распределенным информационным ресурсам, электронным архивам.Internet, служившая когда-то исключительно исследовательским и учебным группам, чьи интересы простирались вплоть до доступа к суперкомпьютерам, становится все более популярной в деловом мире.Компании соблазняют быстрота, дешевая глобальная связь, удобство для проведения совместных работ, доступные программы, уникальная база данных сети Internet. Они рассматривают глобальную сеть как дополнение к своим собственным локальной сетям.Фактически Internet состоит из множества локальных и глобальных сетей, принадлежащих различным компаниям и предприятиям, связанных между собой различными линиями связи. Internet можно представить себе в виде мозаики сложенной из небольших сетей разной величины, которые активно взаимодействуют одна с другой, пересылая файлы, сообщения и т.п.При низкой стоимости услуг (часто это только фиксированная ежемесячная плата за используемые линии или телефон) пользователи могут получить доступ к коммерческим и некоммерческим информационным службам США, Канады, Австралии и многих европейских стран. В архивах свободного доступа сети Internet можно найти информацию практически по всем сферам человеческой деятельности, начиная с новых научных открытий до прогноза погоды на завтра.Кроме того Internet предоставляет уникальные возможности дешевой, надежной и конфиденциальной глобальной связи по всему миру. Это оказывается очень удобным для фирм имеющих свои филиалы по всему миру, транснациональных корпораций и структур управления. Обычно, использование инфраструктуры Internet для международной связи обходится значительно дешевле прямой компьютерной связи через спутниковый канал или через телефон.Электронная почта - самая распространенная услуга сети Internet. В настоящее время свой адрес по электронной почте имеют приблизительно 20 миллионов человек. Посылка письма по электронной почте обходится значительно дешевле посылки обычного письма. Кроме того сообщение, посланное по электронной почте дойдет до адресата за несколько часов, в то время как обычное письмо может добираться до адресата несколько дней, а то и недель.В настоящее время Internet испытывает период подъема, во многом благодаря активной поддержке со стороны правительств европейских стран и США. Ежегодно в США выделяется около 1-2 миллионов долларов на создание новой сетевой инфраструктуры. Исследования в области сетевых коммуникаций финансируются также правительствами Великобритании, Швеции, Финляндии, Германии.Однако, государственное финансирование - лишь небольшая часть поступающих средств, т.к. все более заметной становится "коммерцизация" сети (80-90% средств поступает из частного сектора).Новые границы киберпространства открывают широкие возможности для новшеств, деловой активности и извлечения прибыли. Но есть у интерактивного мира и другая сторона - снижение степени безопасности корпораций. Сеть Internet породила нелегальный рынок, где сбывается информация, составляющая коммерческую тайну корпораций. По оценкам правоохранительных органов, интерактивные преступники ежегодно крадут информацию более чем на 10 млрд. долл. Однако закон до сих пор проигрывает в сражении с ними. Киберворы пользуются преимуществами, которые дает им система защиты Internet, включая свободно распространяемые алгоритмы шифрования с открытым ключом и анонимные узлы ретрансляции электронной почты. Эти средства служат укрытием для торговцев похищенной информацией во всем мире. Степень риска для корпораций повышается независимо от того, работают они по Internet или нет. Угрозу представляет не только возможность проникновения в корпоративную сеть через брандмауэр, но и само становление интерактивного рынка корпоративных данных, которые могут быть украдены и собственными сотрудниками компании.

Нелегальная деятельность по сети изменила лицо корпоративной службы безопасности. Раньше мог исчезнуть один ящик секретных сведений. Теперь же нетрудно скопировать и отправить по электронной почте эквивалент сотен таких ящиков. Все, что для этого требуется, - один хакер. В тот же вечер все сообщество хакеров будет в курсе дела. В число нелегально продаваемой и покупаемой информации входят номера талонов на телефонные переговоры, выдаваемых компаниями междугородной связи , коды подключения к службам сотовой связи, номера кредитных карточек, "вынюхивающие" алгоритмы взлома защиты и пиратские копии программного обеспечения. В некоторых случаях покупателями этой информации являются криминальные структуры, такие как продавцы пиратского ПО, которые покупают украденные номера талонов, чтобы бесплатно звонить по международному телефону. Что еще опаснее, на этом рынке распространяются коммерческие секреты организаций, в частности планы исследований и разработок компаний, занимающихся высокими технологиями. Хотя наибольшим атакам подвергаются сегодня телефонные службы и компании, выдающие кредитные карточки, повышение интенсивности интерактивной коммерции между крупными корпорациями может существенно увеличить риск электронных краж для всей промышленности. По мере выхода коммерции на информационную магистраль мы все становимся мишенями. Риску подвергаются программные агенты и другие объекты.

Распространение электронной коммерции приводит к созданию все новых интерактивных каналов связи, и нет гарантии, что любой из промежуточных каналов не окажется уязвимым местом с точки зрения защиты. Конечно, в краже коммерческих секретов нет ничего нового. Но Internet и другие интерактивные службы открывают торговцам информацией новые возможности для поиска и обмена данными.

.

 

 

 

 

 

 

1 Эволюция вычислительных систем

 

Концепция вычислительных сетей является логическим результатом эволюции компьютерной технологии. Первые компьютеры 50-х годов – большие, громоздкие и дорогие – предназначались для очень небольшого числа избранных пользователей. Часто эти монстры занимали целые здания. Такие компьютеры не были предназначены для интерактивной работы пользователя, а использовались в режиме пакетной обработки.

 

1.1 Системы пакетной обработки

 

Системы пакетной обработки, как правило, строились на базе мэйнфрейма – мощного и надежного компьютера универсального назначения. Пользователи подготавливали перфокарты, содержащие данные и команды программ, и передавали их в вычислительный центр. Операторы вводили эти карты в компьютер, а распечатанные результаты пользователи получали обычно только на следующий день Таким образом, одна неверно набитая карта означала как минимум суточную задержку.

Конечно, для пользователей интерактивный режим работы, при котором можно с терминала оперативно руководить процессом обработки своих данных, был бы гораздо удобней. Но интересами пользователей на первых этапах развития вычислительных систем в значительной степени пренебрегали, поскольку пакетный режим- это самый эффективный режим использования вычислительной мощности, так как он позволяет выполнить в единицу времени больше пользовательских задач, чем любые другие режимы. Во главу угла ставилась эффективность работы самого дорогого устройства вычислительной машины – процессора, в ущерб эффективности работы использующих его специалистов.

 

1.2 Многотерминальные системы – прообраз сети

 

По мере удешевления процессоров в начале 60-х годов появились новые способы организации вычислительного процесса, которые позволили учесть интересы пользователей. Начали развиваться интерактивные многотерминальные системы разделения времени. В таких системах компьютер отдавался в распоряжение сразу нескольким пользователям. Каждый пользователь получал в свое распоряжение терминал, с помощью которого он мог вести диалог с компьютером. Причем время реакции вычислительной системы было достаточно мало для того, чтобы пользователю была не слишком заметна параллельная работа с компьютером и других пользователей. Разделяя, таким образом, компьютер, пользователи получили возможность за сравнительно небольшую плату пользоваться преимуществами компьютеризации.

Терминалы, выйдя за пределы вычислительного центра, рассредоточились по всему предприятию. И хотя вычислительная мощность оставалась полностью централизованной, некоторые функции – такие как ввод и вывод данных - стали распределенными. Такие многотерминальные централизованные системы внешне уже были очень похожи на локальные вычислительные сети. Действительно, рядовой пользователь работу за терминалом мэйнфрейма воспринимал примерно так же, как сейчас он воспринимает работу за подключенным к сети персональным компьютером. Пользователь мог получить доступ к общим файлам и периферийным устройствам, при этом у него поддерживалась полная иллюзия единоличного владения компьютером, так как он мог запустить нужную ему программу в любой момент ипочти сразу же получить результат. (Некоторые, далекие от вычислительной техники пользователи даже были уверены, что все вычисления выполняются внутри их дисплея).

Многотерминальная система – прообраз вычислительной сети.

Таким образом, многотерминальные системы, работающие в режиме разделения времени, стали первым шагом на пути создания локальных вычислительных сетей. Но до появления локальных сетей нужно было пройти еще большой путь, так как многотерминальные системы, хотя и имели внешние черты распределенных систем, все еще сохраняли централизованный характер обработки данных. С другой стороны, и потребность предприятий в создании локальных сетей в это время еще не созрела – в одном здании просто нечего было объединять в сеть, так как из-за высокой стоимости вычислительной техники предприятия не могли себе позволить роскошь приобретения нескольких компьютеров. В этот период был справедлив так называемый «закон Гроша», который эмпирически отражал уровень технологии того времени. В соответствии с этим законом производительность компьютера была пропорциональна квадрату его стоимости, отсюда следовало, что за одну и ту же сумму было выгоднее купить одну мощную машину, чем две менее мощных - их суммарная мощность оказывалась намного ниже мощности дорогой машины.

Информация о работе Защита информации в локальных и глобальных компьютерных сетях