Теоретические основы информатики

Автор работы: Пользователь скрыл имя, 11 Декабря 2010 в 14:59, реферат

Описание работы

Понятие информации и информатики

Файлы: 1 файл

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ.doc

— 856.50 Кб (Скачать файл)

    Этой  “информации” придаются количественная и качественная мера. То есть, вводится количество информации и, по возможности, количество семантики (вопрос о возможности существования собственного смысла сообщения без его интерпретации в передатчике и приемнике обычно не задается) в информационной посылке.

    Таким образом, сохраняются “сигнальные” предпосылки: характеристики сигнала, на котором отражается (переносится) сообщение, и есть предмет изучения информации.

    В этом-то случае и получается, что собственно информацию определять не надо никак. Информация - просто “универсальное свойство” всего существующего в материальном мире, представимое через сигнал. После этого, конечно, можно утверждать, что, в зависимости от конкретного вида сигналов и их сочетаний, количество информации в них может быть больше или меньше.

    Теория  информации определяет, что если сообщение не снимает неопределенности, то оно не содержит информации, и наоборот если сообщение позволяет более определенно задать предмет, то в сообщении содержится информация.

    Например, сообщение о том, что “Лев Николаевич Толстой написал роман «Война и мир», в котором описал события Отечественной войны 1812 года” для человека, знающего литературу, не содержит информацию, так как не несет ничего нового, но для школьников может обладать элементом новизны и тогда является информативным.

    Степень неопределенности сообщения стали измерять величиной, получившей название энтропия, которая является функцией вероятности. Если вероятность равна 1, то энтропия равна нулю, а если вероятность равна 0, то энтропия равна бесконечности.

    Количество  информации, полученное как разность между начальной энтропией (до получения сообщения) и конечной энтропией (после получения сообщения), называется негэнтропией (отрицательной энтропией). Поэтому информацию иногда называют отрицательной энтропией. Соответственно у информации и у энтропии одна единица измерения – бит.

    Такое понимание информации может привести к серьезным заблуждениям. Так, для школьного инспектора сообщение школьника о Л.Н.Толстом и его романе «Война и мир» не менее, а может быть и более (попробуйте подсчитать!) информативно, чем для самого школьника, ибо школьник, как и инспектор, уже информированы, но последнему это позволяет оценить не только знания отдельного ученика, но и уровень преподавания литературы.

    После энтропийно-негэнтропийного подхода  к информации некоторое распространение  получил подход комбинаторный, когда количество информации определяется как функция числа элементов конечного множества в их комбинаторных отношениях. Можно встретить пример, когда мерой количества информации, содержащейся в некотором объекте А, относительно объекта В, берется минимальная “длина программы”, на основе которой можно однозначно преобразовать объект А в объект В. Это отголосок Колмогоровского предложения определения сложности системы по ее “программному” описанию.

    К реальной жизни эти утверждения  привязать довольно трудно, поэтому в другом варианте информация – это отражение разнообразия, то есть воспроизведение разнообразия одного объекта в другом объекте в результате их взаимодействия.

    В такой концепции бит также  является единицей измерения информации, которую получает приемник информации, осуществляя выбор из двух равновероятных возможностей разнообразия. Если же объекты не различаются, то их совокупность не содержит информации.

    Например, в урне обнаружено два шара, из которых  один белый, а второй черный. Оба  вместе они несут в себе разнообразие - информацию - в один бит. Совокупность двух шаров одного цвета предлагается считать не содержащей информации. Основоположником концепции разнообразия является английский нейрофизиолог У.Р.Эшби. По его утверждению “информация не может передаваться в большем количестве, чем позволяет количество разнообразия”.

    Такой подход не очень сильно отличается от примера с утверждениями о  романе «Война и мир». Информацию нельзя отождествлять с различием. Считается, что различие, разнообразие суть объективная основа существования информации, если уж считать ее свойством всех материальных объектов, хотя кто возьмется утверждать, что однообразие не является свойством материи, сигналом или сообщением?

    Можно предложить такое определение информации:

    Информация - свойство материи и передается физическим сигналом, распространяющимся с помощью физического носителя, а ее количество может быть определено множеством подходов, в зависимости от конкретной задачи.

    Качественная  же сторона вообще не раскрыта в теории информации, здесь нет никакой ясности ситуации. В “модельно-математическом ключе” ставится задача нахождения “количества смысла”, “количества семантики”. Обратим внимание на то, что далеко не каждое свойство имеет осмысленное количественное выражение. Известные в математике “качественные шкалы” совсем не обязательно имеют метрику, т.е. некоторый способ сравнения “количеств” этого качества.

    Теория  же информации является самодостаточной, для того, чтобы мы вполне могли  обходиться без “информатики”, а “собственные теории”, принадлежащие информатике как науке пока еще только зарождаются.

    В конечном итоге сегодня во всех литературных источниках обычно указываются три общепринятые, почти “классические”, направления развития исследований, связанных со “свойственно-количественным” подходом к понятию информации:

    - математический, количественный: разработка математического аппарата, отражающего основные свойства информации [Вот так и пишут в литературе: “свойства информации”, которая сама изначально определена как свойство!] или исследования в области сигнального понимания информации в полном соответствии с областью, приписываемой теории информации;

    - понятийный, количественно-качественный: исследование основных свойств (!) информации - измерение ее ценности, полезности и т.п. или исследования в области понимания информации на уровне создания разнообразных подходов к ее количественно-качественному измерению;

    - информатизационный: использование информационных методов в других науках (в социологии, лингвистике, биологии и др.) или рассмотрение информации в ее разъяснительном смысле, определенном как процесс информирования, или “информатизации”, происходящий стихийно или осуществляемый с какой-либо осознанной целью.

    В компьютере для обеспечения выполнения операций с информацией бит представляется единицей или нулем.

    Таким образом, информация в компьютере – это последовательность единиц и нулей и называются эти цифры битами.

    С помощью 1 бита можно передать два варианта сообщений, например, 0 – нет, 1 – да или 0 – черный цвет, 1 – белый цвет. Чтобы вариантов сообщений было больше - биты объединяют. Из n бит можно составить 2n вариантов. Если объединить 8 бит, то получится новая единица измерения информации - 1 байт:

    1 байт = 8 бит

    С помощью 1 байта можно передать 28 = 256 вариантов, чего вполне достаточно для кодирования всех русских и английских, больших и маленьких букв, цифр и специальных знаков. Таким образом:

    1 байт = 1 символ

    При вводе с клавиатуры одного символа  вводиться 1 байт информации.

    Чтобы измерить больший объем информации, применяют более крупные единицы измерения информации.

                                                                                          Таблица 1.1

    Наименование Обозначение Размер
        Бит     Бит     1 двоичный разряд
        Байт     Байт     1 байт = 8 бит
        Килобайт     Кбайт     1 Кбайт = 1024 байта 
        Мегабайт     Мбайт     1 Мбайт = 1024 Кбайта
        Гигабайт     Гбайт     1 Гбайт = 1024 Мбайта
        Терабайт     Тбайт     1 Тбайт = 1024 Гбайта
 

    Надо  заметить, что при переходе к более  крупным единицам «инженерная» погрешность, связанная с округлением, накапливается и становится недопустимой, поэтому на старших единицах измерения округление производится реже. Байт, как группа взаимосвязанных бит, появился вместе с первыми образцами электронной вычислительной техники. Долгое время байт был машинно-зависимым, то есть для разных вычислительных машин длина байта была разной. Только в конце 60-х годов понятие байта стало универсальным и машинонезависимым.  Во многих случаях целесообразно использовать не восьмиразрядное кодирование, а 16-разрядное, 24-разрядное, 32-разрядное и более. Группа из 16 взаимосвязанных бит (двух взаимосвязанных байтов) в информатике называется словом. Соответственно, группы из четырех взаимосвязанных байтов (32 разряда) называются удвоенным словом, а группы из восьми байтов (64 разряда) — учетверенным словом. Пока, на сегодняшний день, такой системы обозначения достаточно.

      1. Единицы хранения данных

    При хранении данных решаются две проблемы: как сохранить данные в наиболее компактном виде и как обеспечить к ним удобный и быстрый  доступ (если доступ не обеспечен, то это не хранение). Для обеспечения доступа необходимо, чтобы данные имели упорядоченную структуру, а при этом  образуется «паразитная нагрузка» в виде адресных данных. Без них нельзя получить доступ к нужным элементам данных, входящих в структуру. Поскольку адресные данные тоже имеют размер и тоже подлежат хранению, хранить данные в виде мелких единиц, таких, как байты, неудобно. Их неудобно хранить и в более крупных единицах (килобайтах, мегабайтах и т. п.), поскольку неполное заполнение одной единицы хранения приводит к неэффективности хранения.

    В качестве единицы хранения данных принят объект переменной длины, называемый файлом. Файл — это последовательность произвольного числа байтов, обладающая уникальным собственным именем. Обычно в отдельном файле хранят данные, относящиеся к одному типу. В этом случае тип данных определяет тип файла.

    Проще всего представить себе файл в  виде безразмерной папки, в которой  можно по желанию добавлять содержимое или извлекать его оттуда. Поскольку в определении файла нет ограничений на размер, можно представить себе файл, имеющий 0 байтов (пустой файл), и файл, имеющий любое число байтов.

    В определении файла особое внимание уделяется имени. Оно фактически несет в себе адресные данные, и  косвенно говорит о той информации, которая содержится в файле.

    Совокупность  файлов образует файловую структуру, которая, как правило, имеет иерархический тип. Полный адрес файла в файловой структуре является уникальным и включает в себя собственное имя файла и путь доступа к нему.

      1. Представление чисел в памяти ЭВМ
        1. Представление информации в виде двоичного кода

    Любой текст, представляется с помощью кода, в котором каждому отдельному символу в тексте (букве алфавита, цифре или знаку препинания) приписывается уникальная последовательность битов. Таким образом, текстовая информация представляется последовательностью битов, в которой наборы битов представляют символы в исходном тексте.

    С появлением компьютеров разрабатывались различные системы кодов, для различного оборудования, что привело к проблемам в передаче информации. Чтобы разрешить сложившуюся ситуацию, Американский национальный институт стандартов (ANSI) принял Американский стандартный код для обмена информацией (ASCII). В этом коде используются наборы из семи битов для представления прописных и строчных букв английского алфавита, цифр от 0 до 9, пунктуационных знаков и управляющей информации: перевод строки, возврат каретки и табуляция.

    Сегодня стандарт ASCII часто увеличен до восьми битов для одного символа, при этом в качестве старшего бита в каждый код символа добавляется 0. Такой метод предоставляет код, в котором каждый набор полностью занимает ячейку памяти размером 1 байт, и дополнительно ещё 128 кодов (полученные приписыванием дополнительному биту значения 1), которые могут представлять символы, не входящие в исходный стандарт ASCII. К сожалению, из-за того, что производители используют свои собственные интерпретации для этих дополнительных наборов битов, данные, в которых они появляются, часто не так просто переместить с системы одного производителя на систему другого. 

Информация о работе Теоретические основы информатики