Автор работы: Пользователь скрыл имя, 11 Декабря 2011 в 12:09, реферат
Суперкомпьютер- это обычная вычислительная система, которая позволяет производить сложные расчеты за более короткие промежутки времени. Система компьютера состоит из трех компонентов - счетного устройства, блока памяти и вторичной системы хранения информации. Большое значение имеет пропускная способность каналов, которая связывает их друг с другом и с терминалами потребителей. Важным показателем компьютера является быстродействие, которое измеряется флопсами.
Введение 2
Суперкомпьютер что это? 3
Развитие суперкомпьютеров. 4
Разновидности параллельных числовых систем 6
Сферы применения суперкомпьютеров 8
Применение суперкомпьютеров 10
Биология и медицина 11
Космическое пространство. 11
Климат и погода. 11
Стихийные бедствия и экологические катастрофы 12
Промышленность. 12
Топ 500 13
Заключение 15
Используемая литература 16
Оглавление
Введение
Целью создания реферата является представление технологий в области суперкомпьютерных систем и способов связи с существующими областями науки и промышленности, нуждающимися в высокопроизводительных вычислениях и моделировании.
В то время, когда появились первые компьютеры, перед разработчиками вычислительной техники стала проблема - производительность вычислительной системы. С годами производительность компьютеров стремительно возрастала, с каждым годом росло и число пользователей компьютерами, что привело к расширению сферы вычислительных систем - это стало одной из причины появления суперкомпьютеров. Что представляют собой суперкомпьютеры, и какова их функция в жизни человека?
Суперкомпьютер- это обычная вычислительная система, которая позволяет производить сложные расчеты за более короткие промежутки времени. Система компьютера состоит из трех компонентов - счетного устройства, блока памяти и вторичной системы хранения информации. Большое значение имеет пропускная способность каналов, которая связывает их друг с другом и с терминалами потребителей. Важным показателем компьютера является быстродействие, которое измеряется флопсами. Флопс - внесистемная единица, используемая для измерения производительности компьютеров, показывающая, сколько операций с плавающей запятой в секунду выполняет данная вычислительная система.
Для чего
нужны суперкомпьютеры? Расширение
границ человеческого знания всегда опиралось
на теорию и опыт. Но теперь ученые
сталкиваются с тем, что многие испытания
стали невозможными - в некоторых случаях
из-за своих масштабов, в других - дороговизны
или опасности для здоровья и жизни людей.
Тут-то и нашли применение мощным компьютерам.
Они позволяют экспериментировать, становятся
опорой современной науки и производства.
Иногда суперкомпьютеры используются
для работы с одним-единственным приложением;
в других случаях они обеспечивают выполнение
большого числа разнообразных приложений.
Суперкомпьютер – это компьютер, способный производить сотни миллиардов операций за 1 с. Такие большие объёмы вычислений нужны для решения задач в аэродинамике, метеорологии, физике высоких энергий, геофизике. Суперкомпьютеры так же нашли своё применение в финансовой сфере при обработке больших объёмов сделок на биржах. Сверхвысокое быстродействие суперкомпьютера обеспечивается параллельной работой множества микропроцессоров.
Суперкомпьютеры –
это не выдумка. Хотя суперкомпьютеры не
используются обычными людьми в повседневной
жизни, их влияние, как на все человечество,
так и на каждого из нас очень заметно.
Вернее, стало бы заметно, если бы они в
один миг исчезли или сломались.
Суперкомпьютеры – это современные вычислительные
машины с высокой мощностью и скоростью
обработки данных. Они не выпускаются
большими партиями и не продаются в магазинах.
Каждый суперкомпьютер уникален, так как
разрабатывается и изготавливается под
конкретный заказ, для решения определенной
задачи. Суперкомпьютеры могут быть как
микроскопически малы, так и занимать
несколько комнат или даже этажей, все
зависит от функций и задач, которые будет
решать электронная техника.
Изобретателем суперкомпьютера является американский инженер С.Крей. В 1972 году он открыл свою фирму под названием «Крей Ресерч Инкорпорейтед». Эта фирма занималась разработкой самых высокоскоростных компьютеров в мире. Изобретением стали мультипроцессорные компьютеры, способные осуществлять одновременную обработку данных. В 1976 году был выпущен первый суперкомпьютер под названием «Крей-1», который мог осуществлять 240 млн. вычислений в одну секунду.
Он
применялся для научных
В 1985 г. появился «Крей-2», который мог выполнить 1 200 млн. операций за 1 с. Представленный в 1988 г. «Крей Y-MP» обладал быстродействием 2 670 млн. операций за 1 с.
Позднее были созданы суперкомпьютеры с ещё большим быстродействием.
Первым отечественным
суперкомпьютером является
Но, перестройка, раскол Советского Союза
и последовавшие за ним события крайне
негативно отразились на отечественной
суперкомпьютерной промышленности. Прощальным
приветом отечественных инженеров-электронщиков
можно считать появившийся в 1990-х процессор Elbrus
2000 (E2K) , который так и не смог выйти на рынок:
сначала помешал кризис, ну а затем, когда
казалось, что "вот уже чуть-чуть",
команду "Эльбруса" на корню купила
Intel. На данный момент все существующие
в России суперкомпьютеры либо зарубежного
производства, либо основаны на зарубежных
комплектующих и технологиях.
Оправившись
от кризиса, индустрия производства
суперкомпьютеров принялась за штурм
новых высот. В 1997 году был создансуперкомпьютер
ASCI RED, обладавший неслыханной тогда производительностью
в 1,34 ТФЛОПС. Однако самое интересное,
что данный компьютер был построен на
базе почти что десяти тысяч процессоров
Pentium II , тех самых, которых можно было спокойно
найти в любом топовом ПК тех лет. Подобная
система объединения вычислительных мощностей
относительно недорогих процессоров получила
название
Шло время, и производители выпускали
всё более и более новыесуперкомпьютеры,
которые задавали новые стандарты производительности.
Символический барьер в один ПФЛОПС (читается
"пентафлопс"; 1 ПФЛОПС = 1000 ТФЛОПС)
был преодолён в 2008 году компьютером Roadrunner от
IBM. Характеристики данной машины, мягко
говоря, шокируют: почти 100 Тб оперативной
памяти, около 20 000 процессоров... Удивляет
и то, что всё это работает под управлением
Linux-систем RedHat и Fedora, причём тех же самых
версий, что устанавливаются на домашние
компьютеры.
Однако Roadrunner не является самым быстрым
суперкомпьютером на сегодняшний день.
Согласно рейтингу самых мощных компьютеров Top-500,
наиболее производительным является японский суперкомпьютер
K производства Fujitsu, запущенный в эксплуатацию
незадолго до написания этих строк. Этот
70 000-процессорный гигант (причём процессоры,
стоит заметить, все до одного восьмиядерные)
на момент написания статьи обладал безумной
производительностью в 8,162 ПФЛОПС. Даже
не хватает воображения, что бы представить,
чем же можно нагрузить подобную махину.
Впрочем, на это есть учёные - перед ними
стоят ещё очень много неразрешённых вопросов.
В соответствии
с классификацией, предложенной М.Флинном
еще в начале 60-х годов прошлого столетия,
параллельные вычислительные системы
имеют несколько разновидностей.При этом
в основу данной классификации заложено
два возможных вида параллелизма: независимость
потоков заданий (команд), существующих
в системе, и независимость (отсутствие
логической связанности) данных, обрабатываемых
в каждом потоке:
Классический
тип суперкомпьютерной
Параллельная архитектура (векторная и матричная) позволяет избежать проблем с системной шиной за счет отсутствия общей для всех процессоров оперативной памяти. Каждый процессор снабжается своей локальной памятью. Чтобы осуществить доступ к локальной памяти другого процессора, используется сеть связи, объединяющая процессоры в систему. Таким образом, в параллельной архитектуре удается снизить нагрузку на шину, ведущую к локальной памяти процессоров, поскольку здесь она обслуживает только запросы на доступ именно к этой памяти, а не каждый запрос на доступ к общей оперативной памяти. Это позволяет строить суперкомпьютеры из сотен и даже тысяч процессоров.
Основным
недостатком параллельной архитектуры
является сложность программирования,
особенно для задач, которым необходима
память, превышающая размер локальной
оперативной памяти одного процессора.
Синхронизация также
Традиционной сферой внедрения суперкомпьютеров постоянно были исследования: физика плазмы и статистическая механика, физика конденсированных сред, молекулярная и атомная физика, теория простых частиц, газовая динамика и теория турбулентности, астрофизика.
В химии
- разные области вычислительной химии:
квантовая химия (включая расчеты
электронной структуры для
Суперкомпьютеры обычно используются
для военных целей. Не считая тривиальных
задач разработки орудия массового ликвидирования
и конструирования самолетов и ракет,
можно упомянуть, к примеру, конструирование
бесшумных подводных лодок и др. Самый
известный пример - это южноамериканская
программа СОИ. Уже упоминавшийся MPP-компьютер
Министерства энергетики США будет применяться
для моделирования ядерного орудия, что
дозволит,в общем, отменить ядерные тесты
в данной стране.