Структура спутниковых радионавигационных систем

Автор работы: Пользователь скрыл имя, 25 Декабря 2014 в 19:15, контрольная работа

Описание работы

Развитие отечественной спутниковой радионавигационной системы (СРНС) ГЛОНАСС имеет уже практически сорокалетнюю историю, начало которой положено, как чаще всего считают, запуском 4 октября 1957 г. в Советском Союзе первого в истории человечества искусственного спутника Земли (ИСЗ). Измерения доплеровского сдвига частоты передатчика этого ИСЗ на пункте наблюдения с известными координатами позволили определить параметры движения этого спутника.

Содержание работы

Исторические сведения…………………………………….………..3
Структура спутниковых радионавигационных систем…………6
Подсистема космических аппаратов………………………………7
Наземный командно-измерительный комплекс………………….8
Навигационная аппаратура потребителей СРНС………..………9
Взаимодействие подсистем СРНС в процессе определения
текущих координат спутников…………………………………..………9
Основные навигационные характеристики НС…………….……10
Решение навигационной задачи……………………………………..13
СРНС ГЛОНАСС………………………………………………………14
Структура и основные характеристики……………………………14
Назначение и состав подсистемы контроля и управления……..16
Центр управления системой……………………………………..16
Контрольные станции…………………………………………….17
Эфемеридное обеспечение………………………………………..18
Особенности формирования эфемеридной
информации в ГЛОНАСС……………………………………………….18
ЛИТЕРАТУРА……………………………………………………………..19

Файлы: 1 файл

Реферат Глонасс.doc

— 478.00 Кб (Скачать файл)

Основной операцией, выполняемой в СРНС с помощью этих сегментов, является определение пространственных координат местоположения потребителей и времени, т. е. пространственно-временных координат (ПВК). Эту операцию осуществляют в соответствии с концепцией независимой навигации, предусматривающей вычисление искомых навигационных параметров непосредственно в аппаратуре потребителя. В рамках этой концепции в СРНС выбран позиционный способ определения местоположения потребителей на основе беззапросных (пассивных) дальномерных измерений по сигналам нескольких навигационных искусственных спутников Земли с известными координатами.

Выбор концепции независимой навигации и использование беззапросных измерений обеспечили возможность достижения неограниченной пропускной способности СРНС. По сравнению с зависимой навигацией, не предусматривающей процедуры вычислений ПВК в ПИ СРНС, произошло усложнение аппаратуры потребителей. Однако современные достижения в области технологий сделали возможной реализацию таких подходов при решении проблемы навигационных определений в СРНС.

Высокая точность определения местоположения потребителей обусловлена многими факторами, включая взаимное расположение спутников и параметры их навигационных сигналов. Структура космического сегмента обеспечивает для потребителя постоянную видимость требуемого числа спутников.

В настоящее время считается целесообразным введение в состав СРНС региональных дополнительных систем, обеспечивающих реализацию наиболее строгих требований потребителей. Эти структуры позволяют существенно повысить точность обсерваций, обнаруживать и идентифицировать нарушения в режимах работы СРНС, недопустимое ухудшение качества ее функционирования и своевременно предупреждать об этом потребителей, т. е. они могут осуществлять контроль целостности системы и поддерживать режим дифференциальных измерений.

2.1. Подсистема космических  аппаратов

Подсистема космических аппаратов СРНС состоит из определенного числа навигационных спутников. Основные функции НС — формирование и излучение радиосигналов, необходимых для навигационных определений потребителей СРНС, контроля бортовых систем спутника подсистемой контроля и управления СРНС. С этой целью в состав аппаратуры НС обычно включают:

радиотехническое оборудование (передатчики навигационных сигналов и телеметрической информации, приемники данных и команд от КИК, антенны, блоки ориентации), ЭВМ, бортовой эталон времени и частоты (БЭВЧ), солнечные батареи и т. д. Бортовые эталоны времени и частоты обеспечивают практически синхронное излучение навигационных сигналов всеми спутниками, что необходимо для реализации режима пассивных дальномерных измерений в аппаратуре потребителей.

Навигационные сигналы спутников содержат дальномерные компоненты и компоненты служебных сообщений. Первые используют для определения в аппаратуре потребителей СРНС навигационных параметров (дальности, ее производных, ПВК и т. д.), вторые — для передачи потребителям координат спутников, векторов их скоростей, времени и др. Основная часть служебных сообщений спутника подготовлена в наземном командно-измерительном комплексе и передана по радиолинии на борт спутника. И только небольшая их часть формируется непосредственно бортовой аппаратурой.

Дальномерные компоненты навигационных сигналов содержат две составляющие, отличающиеся обеспечиваемой ими точностью навигационных определений (стандартной и более высокой). В аппаратуре гражданских потребителей обрабатывается сигнал стандартной точности. Для использования сигнала высокой точности требуется санкция военных органов.

Выбор состава и конфигурации орбитальной группировки НС может обеспечить заданную рабочую зону, возможность реализации различных методов навигационно-временных определений (НВО), непрерывность и точность НВО, диапазон изменения параметров радиосигналов НС и т. д. Например, увеличение высоты полета НС современных средневысотных СРНС до примерно 20 000 км позволяет принимать сигналы каждого НС на значительных территориях (приблизительно на половине поверхности Земли). И тогда несколько НС, расположенных на определенных орбитах, могут формировать сплошное, с точки зрения наземного и авиационного потребителя, радионавигационное поле (глобальную рабочую зону).

Соответствующие характеристики сигналов НС и способы их обработки позволяют проводить навигационные измерения с высокой точностью.

В современных СРНС типа ГЛОНАСС и GPS большое внимание уделяется взаимной синхронизации НС по орбитальным координатам и излучаемым сигналам, что обусловило применение к ним термина "сетевые СРНС".

2.2. Наземный командно-измерительный  комплекс

Подсистема контроля и управления представляет собой комплекс наземных средств (командно-измерительный комплекс — КИК), которые обеспечивают наблюдение и контроль за траекториями движения НС, качеством функционирования их аппаратуры; управление режимами ее работы и параметрами спутниковых радиосигналов, составом, объемом и дискретностью передаваемой со спутников навигационной информации, стабильностью бортовой шкалы времени и др.

Обычно КИК состоит из координационно-вычислительного центра, (КВЦ), станций траекторных измерений и управления (СТИ), системной (наземного) эталона времени и частоты (СЭВЧ).                      

Периодически при полете НС в зоне видимости СТИ, происходит наблюдение за спутником, что позволяет с помощью КВЦ определять и прогнозировать координатную и другую необходимую информацию. Затем эти данные вкладывают в память бортовой ЭВМ и передают потребителям в служебном сообщении в виде кадров соответствующего формата.

Синхронизация различных процессов в СРНС обеспечивается с помощью высокостабильного (атомного) системного эталона времени и частоты, который используется, в частности, в процессе юстировки бортовых эталонов времени и частоты навигационных спутников СРНС.

2.3. Навигационная аппаратура  потребителей СРНС

Приемоиндикаторы СРНС, состоящие из радиоприемника и вычислителя, предназначены для приема и обработки навигационных сигналов спутников с целью определения необходимой потребителям информации (пространственно-временных координат, направления и скорости, пространственной ориентации и т. п.).

Пространственное положение потребителя обычно определяется в приемоиндикаторе в два этапа: сначала определяются текущие координаты спутников и первичные навигационные параметры (дальность, ее производные и др.) относительно соответствующих НС, а затем рассчитываются вторичные — географическая широта, долгота, высота потребителя и т. д.

Сравнение текущих координат потребителей с координатами выбранных навигационных точек (точек маршрута, реперов и т. п.) позволяет сформировать в ПИ сигналы для управления различными транспортными средствами. Вектор скорости потребителя вычисляют путем обработки результатов измерений доплеровских сдвигов частоты сигналов НС с учетом известного вектора скорости спутника. Для нахождения пространственной ориентации потребителя в приемоиндикаторе СРНС осуществляются разностные измерения с использованием специальных антенных решеток.

2.4. Взаимодействие подсистем  СРНС в процессе определения  текущих координат спутников

Способ функционирования современных СРНС позволяет отнести их к радиомаячным навигационным средствам. Однако необходимость постоянного определения текущих координат НС и выбора из них видимых потребителю НС и рабочего созвездия исправных НС существенно отличает СРНС от традиционных радиомаячных РНС (РСБН, РСДН), в которых координаты радиомаяков известны и постоянны. Непрерывное нахождение текущих координат НС, движущихся с большими изменяющимися но времени скоростями, представляет собой сложную задачу.

Координаты НС могут быть определены в общем случае на КИК или непосредственно на спутнике (самоопределяющиеся НС). В настоящее время отдается предпочтение первому подходу. Это связано с тем, что существуют хорошо апробированные на практике методы и средства решения этой проблемы в наземных условиях. В современных СРНС управление НС осуществляется с ограниченных территорий и, следовательно, не обеспечивается постоянное взаимодействие КИК и сети НС. В связи с этим выделяют два этапа решения этой задачи. На первом этапе в аппаратуре КИК измеряют координаты спутников в процессе их пролета в зоне видимости и вычисляют параметры их орбит. Эти данные прогнозируются на фиксированные (опорные) моменты времени, например на середину каждого получасового интервала предстоящих суток, до выработки следующего прогноза. Спрогнозированные координаты НС и их производные (эфемериды) передаются на НС, а затем в виде навигационного (служебного) сообщения, соответствующего указанным моментам времени, потребителям. На втором этапе в аппаратуре потребителя по этим данным осуществляется последующее прогнозирование координат НС, т. е., вычисляются текущие координаты НС в интервалах между опорными точками траектории. Процедуры первичного и вторичного прогнозирования координат проводят при известных закономерностях движения НС.

В отличие от самоопределяющихся НС, рассмотренный вариант функционирования СРНС обеспечивает упрощение аппаратуры спутников за счет усложнения структуры КИК с целью достижения заданной надежности.

Заметим, что в навигационное сообщение НС КИК, кроме того, закладывает альманах  — набор справочных сведений о всей сети НС, в том числе загрубленные эфемериды НС, которые обычно используются для определения видимых потребителю НС и выбора рабочего созвездия, обеспечивающего высокое качество НВО. Темп обновления точной эфемеридной информации (ЭИ) значительно выше, поэтому ее часто называют оперативной ЭИ в отличие от долговременной ЭИ в альманахе.

3. Основные навигационные  характеристики НС

К основным навигационным характеристикам НС относят зону обзора, зону видимости, продолжительность наблюдения, орбитальную конфигурацию сети НС и др. На чертеже (рис. 2) поясняются основные определения.

Зона обзора НС представляет собой участок земной поверхности, на котором можно осуществлять наблюдение за НС, прием его сигналов. Центром зоны обзора является подспутниковая точка О3, называемая географическим местом спутника (ГМС).

Координаты ГМС (географические широта и долгота) могут быть рассчитаны по формулам:

где — орбитальные элементы НС; — гринвичское звездное время;

 — угловая скорость прецессии  узла орбиты. Зона обзора ограничена  линией истинного горизонта в  точке НС, поэтому ее размер  зависит от высоты НС ( ). Размер зоны обзора характеризуется углом или соответствующей ему дугой АО3, которая называется радиусом зоны обзора [км]. Из рис. 2 видно, что

 



 

                                   (1)

Бортовые     приемоиндикаторы СРНС обеспечивают заданную точность измерений в зоне обзора, ограниченной радиогоризонтом, который поднят для пользователя на угол 5 ... 10° (угол маски). В этом случае зона обзора определяется углом , где

                               (2)

Площадь зоны обзора . Тогда относительная площадь обзора , где - площадь земного шара.

При увеличении высоты НС до 40 000 км радиус зоны обзора изменяется незначительно ( 9 400 км), а затраты на формирование такой орбиты возрастают существенно.

Рассмотренная выше зона обзора соответствует фиксированному моменту времени (мгновенная зона обзора).

У нестационарных НС мгновенная зона обзора, перемещаясь по поверхности Земли, образует зону обзора в виде полосы шириной . Ее осью является совокупность ГМС - трасса НС.

Установим условия видимости НС для наблюдателя, расположенного в точке ,  лежащей на трассе НС (рис. 3). Область небосвода СС’, в которой



 

НС наблюдается из точки ; от момента восхода над горизонтом до момента захода     называют  зоной видимости (геометрической зоной видимости), для которой справедливы соотношения (1), (2). Из рис. 3 видно, что максимальный угловой радиус зоны видимости (дуга А'С')

С учетом радиогоризонта угловой радиус зоны обзора уменьшается . Здесь угол a называют минимально допустимой высотой.

Продолжительность сеанса связи с НС  (в пределах видимости НС) определяется разностью ( ) и зависит от угла b (т. е. от высоты полета НС или периода его обращения Т).

      Для круговой орбиты  , где — угловая скорость обращения спутника.

Для СРНС ГЛОНАСС км, % при км, ; » 300 мин.

Очевидно, что если потребитель находится в стороне от трассы НС, то продолжительность наблюдения спутника уменьшается.

Навигационные алгоритмы, реализованные в бортовых приемоиндикаторах современных СРНС, обычно ориентированы на прием сигналов от нескольких НС одновременно. Наблюдение в любой точке рабочей зоны СРНС одновременно нескольких НС обеспечивается путем оптимального выбора стабильной пространственно-временной структуры (конфигурации) сети НС — числа, ориентации и формы орбит; числа НС на каждой из них; взаимного расположения орбит и спутников на них. Обычно число НС в сети превышает минимально необходимое за счет резервных НС.

 

4.  Решение навигационной  задачи

Основным содержанием навигационной задачи (НЗ) в СРНС является определение пространственно-временных координат потребителя, а также составляющих его скорости, поэтому в результате решения навигационной задачи должен быть определен расширенный вектор состояния потребителя П, который в инерциальной системе координат можно представить в виде . Элементами данного вектора служат пространственные координаты (х, у, z) потребителя, временная поправка t' шкалы времени потребителя относительно системной ШВ, а также составляющие вектора скорости .

Элементы вектора потребителя недоступны непосредственному измерению с помощью радиосредств. У принятого радиосигнала могут измеряться те или другие его параметры, например задержка или доплеровское смещение частоты. Измеряемый в интересах навигации параметр радиосигнала называют радионавигационным (РНП), а соответствующий ему геометрический параметр — навигационным (НП), поэтому задержка сигнала t и его доплеровское смещение частоты являются радионавигационными параметрами, а соответствующие им дальность до объекта Д и радиальная скорость сближения объектов служат навигационными параметрами. Связь между этими параметрами дается соотношениями:

де с — скорость света; l — длина волны излучаемого НС сигнала.

Геометрическое место точек пространства с одинаковым значением навигационного параметра называют поверхностью положения. Пересечение двух поверхностей положения определяет линию положения — геометрическое место точек пространства, имеющих два определенных значения двух навигационных параметров. Местоположение определяется координатами точки пересечения трех поверхностей положения или двух линий положения. В ряде случаев (из-за нелинейности) две линии положения могут пересекаться в двух точках. При этом однозначно найти местоположение можно, только используя дополнительную поверхность положения или иную информацию о местоположении объекта.

Информация о работе Структура спутниковых радионавигационных систем